Li Hang, Zhou Pengfei, Liu Fangming, Li Haixia, Cheng Fangyi, Chen Jun
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) , College of Chemistry , Nankai University , Tianjin 300071 , China . Email:
School of Chemistry and Chemical Engineering , Shandong University of Technology , Zibo 255049 , China.
Chem Sci. 2018 Nov 12;10(5):1374-1379. doi: 10.1039/c8sc03385d. eCollection 2019 Feb 7.
Nickel-rich layered transition metal oxides are attractive cathode materials for rechargeable lithium-ion batteries but suffer from inherent structural and thermal instabilities that limit the deliverable capacity and cycling performance on charging to a cutoff voltage above 4.3 V. Here we report LiNiCoMgO as a stable cathode material. The obtained LiNiCoMgO microspheres exhibit high capacity (228.3 mA h g at 0.1C) and remarkable cyclability (84.3% capacity retention after 300 cycles). Combined X-ray diffraction and Cs-corrected microscopy reveal that Mg doping stabilizes the layered structure by suppressing Li/Ni cation mixing and Ni migration to interlayer Li slabs. Because of the pillar effect of Mg in Li sites, LiNiCoMgO shows decent thermal stability and small lattice variation until it is charged to 4.7 V, undergoing a H1-H2 phase transition without discernible formation of an unstable H3 phase. The results indicate that moderate Mg doping is a facile yet effective strategy to develop high-performance Ni-rich cathode materials.
富镍层状过渡金属氧化物是极具吸引力的可充电锂离子电池正极材料,但存在固有的结构和热不稳定性,这限制了在充电至4.3 V以上截止电压时的可交付容量和循环性能。在此,我们报道LiNiCoMgO作为一种稳定的正极材料。所制备的LiNiCoMgO微球表现出高容量(在0.1C时为228.3 mA h g)和出色的循环稳定性(300次循环后容量保持率为84.3%)。结合X射线衍射和Cs校正显微镜分析表明,Mg掺杂通过抑制Li/Ni阳离子混合以及Ni迁移到层间Li板来稳定层状结构。由于Mg在Li位点的支柱效应,LiNiCoMgO在充电至4.7 V之前表现出良好的热稳定性和较小的晶格变化,经历H1-H2相变且未明显形成不稳定的H3相。结果表明,适度的Mg掺杂是开发高性能富镍正极材料的一种简便而有效的策略。