Firat University Technology, Faculty Software Engineering Department Elazig, Turkey.
Firat University Technology, Faculty Software Engineering Department Elazig, Turkey.
Med Hypotheses. 2020 Jun;139:109691. doi: 10.1016/j.mehy.2020.109691. Epub 2020 Mar 26.
Steganography is one of the approaches used in data hiding. Image steganography, is a type of steganography that the image is used as a covering object. Data hiding capacity and image quality of the cover object are important factors in image steganography. Because the deterioration of image quality can be noticed by the human vision system, it attracts the attention of attackers. Therefore, the purpose of this study is increasing the amount of data to be hidden and stego image is to ensure high image quality. In the study, a new optimization-based method has been proposed by making use of the similarities of the pixels. In order to test the performance of the proposed method has been used visual quality analysis metrics such as MSE, RMSE, PSNR, SSIM and UQI. As a cover object; different sizes medical images have been used that obtained from the open access Dicom library database. Doctor comments in different capacities have been hidden to the medical images. Experimental results show that the average PSNR value is 66.5374, 59.4420 and 56.3936, respectively, when 1000 characters, 5000 characters and 10,000 characters data is hidden in 512 × 512 images. In addition, the average PSNR value is 60.4308, 53.3529 and 47.4113, respectively, when 1000 characters, 5000 characters and 10,000 characters data is hidden in 256 × 256 images. 10,000 characters of data have not been hidden in 256 × 256 images without using data compression techniques with classical similarity based LSB method. In the proposed method, 10,000 characters of data have been hidden in 256 × 256 size images without using data compression techniques.
隐写术是数据隐藏中使用的方法之一。图像隐写术是一种将图像用作覆盖对象的隐写术。隐藏对象的数据容量和图像质量是图像隐写术的重要因素。由于图像质量的恶化可能会被人类视觉系统察觉,因此引起了攻击者的注意。因此,本研究的目的是增加要隐藏的数据量,并确保隐写图像具有高质量。在研究中,利用像素的相似性提出了一种新的基于优化的方法。为了测试所提出方法的性能,使用了视觉质量分析指标,如 MSE、RMSE、PSNR、SSIM 和 UQI。作为覆盖对象,使用了来自开放访问的 Dicom 库数据库的不同大小的医学图像。将不同容量的医生评论隐藏到医学图像中。实验结果表明,当在 512×512 图像中隐藏 1000 个字符、5000 个字符和 10000 个字符数据时,平均 PSNR 值分别为 66.5374、59.4420 和 56.3936。此外,当在 256×256 图像中隐藏 1000 个字符、5000 个字符和 10000 个字符数据时,平均 PSNR 值分别为 60.4308、53.3529 和 47.4113。在不使用经典基于相似性的 LSB 方法的数据压缩技术的情况下,在 256×256 图像中未隐藏 10000 个字符的数据。在所提出的方法中,在不使用数据压缩技术的情况下,在 256×256 大小的图像中隐藏了 10000 个字符的数据。