Suppr超能文献

一种基于模糊逻辑的新型图像隐写术方法,用于确保医学数据安全。

A novel fuzzy logic-based image steganography method to ensure medical data security.

作者信息

Karakış R, Güler I, Çapraz I, Bilir E

机构信息

Department of Electronics and Computer Education, Faculty of Technical Education, Cumhuriyet University, Sivas, Turkey.

Department of Electronics and Computer Education, Faculty of Technical Education, Gazi University, 06500, Teknikokullar, Ankara, Turkey.

出版信息

Comput Biol Med. 2015 Dec 1;67:172-83. doi: 10.1016/j.compbiomed.2015.10.011. Epub 2015 Oct 27.

Abstract

This study aims to secure medical data by combining them into one file format using steganographic methods. The electroencephalogram (EEG) is selected as hidden data, and magnetic resonance (MR) images are also used as the cover image. In addition to the EEG, the message is composed of the doctor׳s comments and patient information in the file header of images. Two new image steganography methods that are based on fuzzy-logic and similarity are proposed to select the non-sequential least significant bits (LSB) of image pixels. The similarity values of the gray levels in the pixels are used to hide the message. The message is secured to prevent attacks by using lossless compression and symmetric encryption algorithms. The performance of stego image quality is measured by mean square of error (MSE), peak signal-to-noise ratio (PSNR), structural similarity measure (SSIM), universal quality index (UQI), and correlation coefficient (R). According to the obtained result, the proposed method ensures the confidentiality of the patient information, and increases data repository and transmission capacity of both MR images and EEG signals.

摘要

本研究旨在通过使用隐写术方法将医学数据合并为一种文件格式来保护其安全。选择脑电图(EEG)作为隐藏数据,磁共振(MR)图像也用作载体图像。除了EEG之外,消息还由图像文件头中的医生注释和患者信息组成。提出了两种基于模糊逻辑和相似度的新图像隐写术方法,以选择图像像素的非顺序最低有效位(LSB)。像素中灰度级的相似度值用于隐藏消息。通过使用无损压缩和对称加密算法来保护消息以防止攻击。通过均方误差(MSE)、峰值信噪比(PSNR)、结构相似性度量(SSIM)、通用质量指数(UQI)和相关系数(R)来衡量隐写图像质量的性能。根据所得结果,所提出的方法确保了患者信息的保密性,并增加了MR图像和EEG信号的数据存储库和传输容量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验