Suppr超能文献

脑转移瘤:大小分布的统计建模分析。

Brain Metastases: Insights from Statistical Modeling of Size Distribution.

机构信息

From the Department of Neuroradiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.

出版信息

AJNR Am J Neuroradiol. 2020 Apr;41(4):579-582. doi: 10.3174/ajnr.A6496. Epub 2020 Apr 2.

Abstract

BACKGROUND AND PURPOSE

Brain metastases are a common finding on brain MRI. However, the factors that dictate their size and distribution are incompletely understood. Our aim was to discover a statistical model that can account for the size distribution of parenchymal metastases in the brain as measured on contrast-enhanced MR imaging.

MATERIALS AND METHODS

Tumor volumes were calculated on the basis of measured tumor diameters from contrast-enhanced T1-weighted spoiled gradient-echo images in 68 patients with untreated parenchymal metastatic disease. Tumor volumes were then placed in rank-order distributions and compared with 11 different statistical curve types. The resultant values to assess goodness of fit were calculated. The top 2 distributions were then compared using the likelihood ratio test, with resultant values demonstrating the relative likelihood of these distributions accounting for the observed data.

RESULTS

Thirty-nine of 68 cases best fit a power distribution (mean = 0.938 ± 0.050), 20 cases best fit an exponential distribution (mean = 0.957 ± 0.050), and the remaining cases were scattered among the remaining distributions. Likelihood ratio analysis revealed that 66 of 68 cases had a positive mean value (1.596 ± 1.316), skewing toward a power law distribution.

CONCLUSIONS

The size distributions of untreated brain metastases favor a power law distribution. This finding suggests that metastases do not exist in isolation, but rather as part of a complex system. Furthermore, these results suggest that there may be a relatively small number of underlying variables that substantially influence the behavior of these systems. The identification of these variables could have a profound effect on our understanding of these lesions and our ability to treat them.

摘要

背景与目的

脑转移瘤是脑 MRI 的常见表现。然而,决定其大小和分布的因素尚未完全阐明。我们的目的是发现一种统计模型,可以解释对比增强磁共振成像上测量的脑实质转移瘤的大小分布。

材料与方法

在 68 例未经治疗的脑实质转移性疾病患者的对比增强 T1 加权扰相梯度回波图像上,根据测量的肿瘤直径计算肿瘤体积。然后将肿瘤体积按秩次分布,并与 11 种不同的统计曲线类型进行比较。计算得出评估拟合优度的 值。然后使用似然比检验比较前 2 种分布,所得 值表明这些分布解释观测数据的相对可能性。

结果

68 例中有 39 例最符合幂律分布(均值 = 0.938 ± 0.050),20 例最符合指数分布(均值 = 0.957 ± 0.050),其余病例分布在其余分布中。似然比分析显示,68 例中有 66 例的平均 值为正(1.596 ± 1.316),偏向幂律分布。

结论

未经治疗的脑转移瘤的大小分布倾向于幂律分布。这一发现表明转移瘤不是孤立存在的,而是作为一个复杂系统的一部分。此外,这些结果表明,可能存在少数潜在变量,这些变量对这些系统的行为有很大影响。这些变量的识别可能对我们理解这些病变和治疗这些病变的能力产生深远影响。

相似文献

1
Brain Metastases: Insights from Statistical Modeling of Size Distribution.
AJNR Am J Neuroradiol. 2020 Apr;41(4):579-582. doi: 10.3174/ajnr.A6496. Epub 2020 Apr 2.
3
Mapping distribution of brain metastases: does the primary tumor matter?
J Neurooncol. 2020 Mar;147(1):229-235. doi: 10.1007/s11060-020-03419-6. Epub 2020 Feb 17.
4
Characterisation of Lesions after Stereotactic Radiosurgery for Brain Metastases: Impact of Delayed Contrast Magnetic Resonance Imaging.
Clin Oncol (R Coll Radiol). 2017 Mar;29(3):143-150. doi: 10.1016/j.clon.2016.09.021. Epub 2016 Oct 21.
5
Modeling growth kinetics and statistical distribution of oligometastases.
Semin Radiat Oncol. 2006 Apr;16(2):111-9. doi: 10.1016/j.semradonc.2005.12.006.
7
Serial MR imaging of intracranial metastases after radiosurgery.
Magn Reson Imaging. 1997;15(10):1121-32. doi: 10.1016/s0730-725x(97)00178-1.
8
Diagnostic value of gadobutrol versus gadopentetate dimeglumine in enhanced MRI of brain metastases.
J Magn Reson Imaging. 2017 Jun;45(6):1827-1834. doi: 10.1002/jmri.25491. Epub 2016 Oct 3.
9
2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution.
MAGMA. 2018 Apr;31(2):285-294. doi: 10.1007/s10334-017-0653-9. Epub 2017 Sep 22.

引用本文的文献

本文引用的文献

1
Mathematical Modeling of Tumor-Tumor Distant Interactions Supports a Systemic Control of Tumor Growth.
Cancer Res. 2017 Sep 15;77(18):5183-5193. doi: 10.1158/0008-5472.CAN-17-0564. Epub 2017 Jul 20.
2
Concomitant tumor resistance: the role of tyrosine isomers in the mechanisms of metastases control.
Cancer Res. 2012 Mar 1;72(5):1043-50. doi: 10.1158/0008-5472.CAN-11-2964. Epub 2012 Feb 7.
3
Strategies for cancer stem cell elimination: insights from mathematical modeling.
J Theor Biol. 2012 Apr 7;298:32-41. doi: 10.1016/j.jtbi.2011.12.016. Epub 2011 Dec 23.
4
Tyrosine isomers mediate the classical phenomenon of concomitant tumor resistance.
Cancer Res. 2011 Nov 15;71(22):7113-24. doi: 10.1158/0008-5472.CAN-11-0581.
5
Common ecology quantifies human insurgency.
Nature. 2009 Dec 17;462(7275):911-4. doi: 10.1038/nature08631.
6
Information dynamics in carcinogenesis and tumor growth.
Mutat Res. 2004 Dec 21;568(2):259-73. doi: 10.1016/j.mrfmmm.2004.04.018.
7
The universal dynamics of tumor growth.
Biophys J. 2003 Nov;85(5):2948-61. doi: 10.1016/S0006-3495(03)74715-8.
8
The fractal nature of nature: power laws, ecological complexity and biodiversity.
Philos Trans R Soc Lond B Biol Sci. 2002 May 29;357(1421):619-26. doi: 10.1098/rstb.2001.0993.
9
The growth law of primary breast cancer as inferred from mammography screening trials data.
Br J Cancer. 1998 Aug;78(3):382-7. doi: 10.1038/bjc.1998.503.
10
Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.
Cell. 1997 Jan 24;88(2):277-85. doi: 10.1016/s0092-8674(00)81848-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验