Brown James H, Gupta Vijay K, Li Bai-Lian, Milne Bruce T, Restrepo Carla, West Geoffrey B
Department of Biology, University of New Mexico, Albuquerque 87131, USA.
Philos Trans R Soc Lond B Biol Sci. 2002 May 29;357(1421):619-26. doi: 10.1098/rstb.2001.0993.
Underlying the diversity of life and the complexity of ecology is order that reflects the operation of fundamental physical and biological processes. Power laws describe empirical scaling relationships that are emergent quantitative features of biodiversity. These features are patterns of structure or dynamics that are self-similar or fractal-like over many orders of magnitude. Power laws allow extrapolation and prediction over a wide range of scales. Some appear to be universal, occurring in virtually all taxa of organisms and types of environments. They offer clues to underlying mechanisms that powerfully constrain biodiversity. We describe recent progress and future prospects for understanding the mechanisms that generate these power laws, and for explaining the diversity of species and complexity of ecosystems in terms of fundamental principles of physical and biological science.
生命的多样性和生态的复杂性背后存在着秩序,这种秩序反映了基本物理和生物过程的运行。幂律描述了经验性的标度关系,这些关系是生物多样性的涌现性定量特征。这些特征是在许多数量级上具有自相似或类分形性质的结构或动态模式。幂律允许在广泛的尺度范围内进行外推和预测。有些幂律似乎具有普遍性,几乎出现在所有生物分类群和环境类型中。它们为强有力地限制生物多样性的潜在机制提供了线索。我们描述了在理解产生这些幂律的机制以及从物理和生物科学的基本原理来解释物种多样性和生态系统复杂性方面的最新进展和未来前景。