Suppr超能文献

CRISPR-Cas9 核酸酶与同源原间隔序列邻近基序(PAM)序列亲和力的定量分析。

Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.

机构信息

Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854

Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854.

出版信息

J Biol Chem. 2020 May 8;295(19):6509-6517. doi: 10.1074/jbc.RA119.012239. Epub 2020 Apr 1.

Abstract

The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9-gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from , , and complexed with guide RNAs (gRNAs) (SpCas9-gRNA, SaCas9-gRNA, and FnCas9-gRNA, respectively) and of three engineered SpCas9-gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a "beacon" assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9-gRNA binding to fluorescently labeled target DNA derivatives called "Cas9 beacons." We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9-gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency.

摘要

CRISPR/Cas9 核酸酶已广泛应用于各种生物体的基因组编辑。Cas9 核酸酶与向导 RNA(Cas9-gRNA)复合物通过扫描和询问与 gRNA 互补的基因组 DNA 来寻找其靶标。DNA 靶序列的识别需要位于该序列之外的短间隔基序(PAM)。鉴于靶定位的效率可能取决于促进靶标识别的相互作用的强度,我们在这里试图比较不同 Cas9 核酸酶与其同源 PAM 序列的亲和力。为此,我们测量了来自 、 、 和 的 Cas9 核酸酶与向导 RNA(gRNA)(分别为 SpCas9-gRNA、SaCas9-gRNA 和 FnCas9-gRNA)的亲和力,以及三个具有改变的 PAM 特异性的工程化 SpCas9-gRNA 变体与短的、含有 PAM 的 DNA 探针的亲和力。我们使用“信标”测定法通过确定其竞争影响 Cas9-gRNA 与称为“Cas9 信标”的荧光标记靶 DNA 衍生物结合的速率的能力来测量 DNA 探针的相对亲和力。我们观察到研究中的 Cas9 酶之间对同源 PAM 序列的亲和力存在显着差异。SpCas9-gRNA 及其工程变体对规范和非最佳 PAM 的相对亲和力与这些 PAM 序列在基因组编辑中的效率的先前发现相关。这些发现表明 Cas9 核酸酶与其同源 PAM 的高亲和力促进了更高的基因组编辑效率。

相似文献

1
Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
J Biol Chem. 2020 May 8;295(19):6509-6517. doi: 10.1074/jbc.RA119.012239. Epub 2020 Apr 1.
3
Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22.
4
Molecular Mechanism of D1135E-Induced Discriminated CRISPR-Cas9 PAM Recognition.
J Chem Inf Model. 2022 Jun 27;62(12):3057-3066. doi: 10.1021/acs.jcim.1c01562. Epub 2022 Jun 6.
5
Crystal Structure of Staphylococcus aureus Cas9.
Cell. 2015 Aug 27;162(5):1113-26. doi: 10.1016/j.cell.2015.08.007.
6
Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.
Mol Cell. 2016 Mar 17;61(6):886-94. doi: 10.1016/j.molcel.2016.02.018.
7
Structural insights into a high fidelity variant of SpCas9.
Cell Res. 2019 Mar;29(3):183-192. doi: 10.1038/s41422-018-0131-6. Epub 2019 Jan 21.
8
Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
PLoS Biol. 2019 Oct 11;17(10):e3000496. doi: 10.1371/journal.pbio.3000496. eCollection 2019 Oct.
10
Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex.
Int J Mol Sci. 2021 Mar 13;22(6):2937. doi: 10.3390/ijms22062937.

引用本文的文献

1
A census of anti-CRISPR proteins reveals AcrIE9 as an inhibitor of K12 Type IE CRISPR-Cas system.
bioRxiv. 2025 May 10:2025.05.07.652737. doi: 10.1101/2025.05.07.652737.
2
Effective IHH gene knockout by CRISPR/Cas9 system in chicken DF-1 cells.
Poult Sci. 2025 Jun 16;104(9):105433. doi: 10.1016/j.psj.2025.105433.
4
Cas9 interaction with the tracrRNA nexus modulates the repression of type II-A CRISPR-cas genes.
Nucleic Acids Res. 2024 Sep 23;52(17):10595-10606. doi: 10.1093/nar/gkae597.
5
PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics.
Nat Commun. 2024 Jun 28;15(1):5471. doi: 10.1038/s41467-024-49233-w.
8
Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications.
Mol Biomed. 2023 Apr 7;4(1):10. doi: 10.1186/s43556-023-00115-5.
9
How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances.
Pharmaceutics. 2022 Aug 31;14(9):1837. doi: 10.3390/pharmaceutics14091837.
10
Engineered probiotics.
Microb Cell Fact. 2022 Apr 27;21(1):72. doi: 10.1186/s12934-022-01799-0.

本文引用的文献

1
High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells.
Nat Biomed Eng. 2020 Jan;4(1):111-124. doi: 10.1038/s41551-019-0505-1. Epub 2020 Jan 14.
2
Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid.
J Integr Plant Biol. 2020 Apr;62(4):398-402. doi: 10.1111/jipb.12886. Epub 2020 Jan 9.
3
Engineered Cas9 variant tools expand targeting scope of genome and base editing in rice.
Plant Biotechnol J. 2020 Jun;18(6):1348-1350. doi: 10.1111/pbi.13293. Epub 2019 Nov 20.
4
Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing.
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):20959-20968. doi: 10.1073/pnas.1818461116. Epub 2019 Sep 30.
5
A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9.
Cell. 2019 May 2;177(4):1067-1079.e19. doi: 10.1016/j.cell.2019.04.009.
6
Boosting activity of high-fidelity CRISPR/Cas9 variants using a tRNA-processing system in human cells.
J Biol Chem. 2019 Jun 7;294(23):9308-9315. doi: 10.1074/jbc.RA119.007791. Epub 2019 Apr 22.
7
Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
Mol Plant. 2019 Jul 1;12(7):1027-1036. doi: 10.1016/j.molp.2019.03.011. Epub 2019 Mar 27.
9
CRISPR-Cas molecular beacons as tool for studies of assembly of CRISPR-Cas effector complexes and their interactions with DNA.
Methods Enzymol. 2019;616:337-363. doi: 10.1016/bs.mie.2018.10.026. Epub 2018 Dec 1.
10
Cas9 is a multiple-turnover enzyme.
RNA. 2019 Jan;25(1):35-44. doi: 10.1261/rna.067355.118. Epub 2018 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验