文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

进化的 Cas9 核酸酶的 PAM 扩展和保真度增强的分子基础。

Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.

机构信息

School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.

State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai, China.

出版信息

PLoS Biol. 2019 Oct 11;17(10):e3000496. doi: 10.1371/journal.pbio.3000496. eCollection 2019 Oct.


DOI:10.1371/journal.pbio.3000496
PMID:31603896
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6808508/
Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have been harnessed as powerful genome editing tools in diverse organisms. However, the off-target effects and the protospacer adjacent motif (PAM) compatibility restrict the therapeutic applications of these systems. Recently, a Streptococcus pyogenes Cas9 (SpCas9) variant, xCas9, was evolved to possess both broad PAM compatibility and high DNA fidelity. Through determination of multiple xCas9 structures, which are all in complex with single-guide RNA (sgRNA) and double-stranded DNA containing different PAM sequences (TGG, CGG, TGA, and TGC), we decipher the molecular mechanisms of the PAM expansion and fidelity enhancement of xCas9. xCas9 follows a unique two-mode PAM recognition mechanism. For non-NGG PAM recognition, xCas9 triggers a notable structural rearrangement in the DNA recognition domains and a rotation in the key PAM-interacting residue R1335; such mechanism has not been observed in the wild-type (WT) SpCas9. For NGG PAM recognition, xCas9 applies a strategy similar to WT SpCas9. Moreover, biochemical and cell-based genome editing experiments pinpointed the critical roles of the E1219V mutation for PAM expansion and the R324L, S409I, and M694I mutations for fidelity enhancement. The molecular-level characterizations of the xCas9 nuclease provide critical insights into the mechanisms of the PAM expansion and fidelity enhancement of xCas9 and could further facilitate the engineering of SpCas9 and other Cas9 orthologs.

摘要

成簇规律间隔短回文重复(CRISPR)-Cas 系统已被用作多种生物中强大的基因组编辑工具。然而,脱靶效应和前导序列相邻基序(PAM)的兼容性限制了这些系统的治疗应用。最近,一种酿脓链球菌 Cas9(SpCas9)变体 xCas9 进化而来,具有广泛的 PAM 兼容性和高 DNA 保真度。通过确定多个与单引导 RNA(sgRNA)和含有不同 PAM 序列(TGG、CGG、TGA 和 TGC)的双链 DNA 复合物的 xCas9 结构,我们揭示了 xCas9 的 PAM 扩展和保真度增强的分子机制。xCas9 遵循一种独特的双模 PAM 识别机制。对于非-NGG PAM 识别,xCas9 在 DNA 识别结构域中触发显著的结构重排,并使关键 PAM 相互作用残基 R1335 发生旋转;这种机制在野生型(WT)SpCas9 中尚未观察到。对于 NGG PAM 识别,xCas9 采用与 WT SpCas9 相似的策略。此外,生化和基于细胞的基因组编辑实验指出,E1219V 突变对于 PAM 扩展至关重要,而 R324L、S409I 和 M694I 突变对于保真度增强至关重要。xCas9 核酸酶的分子水平表征为 xCas9 的 PAM 扩展和保真度增强机制提供了重要的见解,并可能进一步促进 SpCas9 和其他 Cas9 同源物的工程改造。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/cf74faa23c2a/pbio.3000496.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/1016af5a9a0e/pbio.3000496.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/0eab69b300fc/pbio.3000496.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/d598c3fa56d9/pbio.3000496.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/1ef29390428d/pbio.3000496.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/69adf2c06d39/pbio.3000496.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/cf74faa23c2a/pbio.3000496.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/1016af5a9a0e/pbio.3000496.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/0eab69b300fc/pbio.3000496.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/d598c3fa56d9/pbio.3000496.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/1ef29390428d/pbio.3000496.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/69adf2c06d39/pbio.3000496.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/6808508/cf74faa23c2a/pbio.3000496.g006.jpg

相似文献

[1]
Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.

PLoS Biol. 2019-10-11

[2]
Structural insights into a high fidelity variant of SpCas9.

Cell Res. 2019-1-21

[3]
PpCas9 from Pasteurella pneumotropica - a compact Type II-C Cas9 ortholog active in human cells.

Nucleic Acids Res. 2020-12-2

[4]
Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster.

Arch Insect Biochem Physiol. 2020-2-6

[5]
Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.

Plant Cell Physiol. 2019-10-1

[6]
Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.

Mol Plant. 2019-3-27

[7]
[Structure-based optimization and design of CRISPR protein xCas9].

Sheng Wu Gong Cheng Xue Bao. 2021-4-25

[8]
High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells.

Nat Biomed Eng. 2020-1-14

[9]
Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.

Mol Plant. 2019-3-27

[10]
Molecular Mechanism of D1135E-Induced Discriminated CRISPR-Cas9 PAM Recognition.

J Chem Inf Model. 2022-6-27

引用本文的文献

[1]
In Vitro Correction of Point Mutations in the Gene Using Prime Editing.

Int J Mol Sci. 2025-6-12

[2]
Catalytic-state structure of Candidatus Hydrogenedentes Cas12b revealed by cryo-EM studies.

Nucleic Acids Res. 2025-6-20

[3]
Flexibility in PAM recognition expands DNA targeting in xCas9.

Elife. 2025-2-10

[4]
Flexibility in PAM Recognition Expands DNA Targeting in xCas9.

bioRxiv. 2025-1-2

[5]
AlPaCas: allele-specific CRISPR gene editing through a protospacer-adjacent-motif (PAM) approach.

Nucleic Acids Res. 2024-7-5

[6]
Engineering Cas9: next generation of genomic editors.

Appl Microbiol Biotechnol. 2024-2-14

[7]
CRISPR/Cas9 technology: applications in oocytes and early embryos.

J Transl Med. 2023-10-24

[8]
Advances in bread wheat production through CRISPR/Cas9 technology: a comprehensive review of quality and other aspects.

Planta. 2023-7-31

[9]
Current genetic strategies to investigate gene functions in Trichoderma reesei.

Microb Cell Fact. 2023-5-10

[10]
Exploring and engineering PAM-diverse Streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria.

Metab Eng. 2023-1

本文引用的文献

[1]
EditR: A Method to Quantify Base Editing from Sanger Sequencing.

CRISPR J. 2018-6

[2]
Structural insights into a high fidelity variant of SpCas9.

Cell Res. 2019-1-21

[3]
Key role of the REC lobe during CRISPR-Cas9 activation by 'sensing', 'regulating', and 'locking' the catalytic HNH domain.

Q Rev Biophys. 2018-8-3

[4]
CRISPR/Cas9-based Genome Editing in Pseudomonas aeruginosa and Cytidine Deaminase-Mediated Base Editing in Pseudomonas Species.

iScience. 2018-8-31

[5]
CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.

Appl Environ Microbiol. 2018-11-15

[6]
Engineered CRISPR-Cas9 nuclease with expanded targeting space.

Science. 2018-8-30

[7]
Target Specificity of Cas9 Nuclease via DNA Rearrangement Regulated by the REC2 Domain.

J Am Chem Soc. 2018-6-13

[8]
Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.

Nature. 2018-2-28

[9]
A highly specific SpCas9 variant is identified by in vivo screening in yeast.

Nat Biotechnol. 2018-1-29

[10]
Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage.

Nature. 2017-11-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索