School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai, China.
PLoS Biol. 2019 Oct 11;17(10):e3000496. doi: 10.1371/journal.pbio.3000496. eCollection 2019 Oct.
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have been harnessed as powerful genome editing tools in diverse organisms. However, the off-target effects and the protospacer adjacent motif (PAM) compatibility restrict the therapeutic applications of these systems. Recently, a Streptococcus pyogenes Cas9 (SpCas9) variant, xCas9, was evolved to possess both broad PAM compatibility and high DNA fidelity. Through determination of multiple xCas9 structures, which are all in complex with single-guide RNA (sgRNA) and double-stranded DNA containing different PAM sequences (TGG, CGG, TGA, and TGC), we decipher the molecular mechanisms of the PAM expansion and fidelity enhancement of xCas9. xCas9 follows a unique two-mode PAM recognition mechanism. For non-NGG PAM recognition, xCas9 triggers a notable structural rearrangement in the DNA recognition domains and a rotation in the key PAM-interacting residue R1335; such mechanism has not been observed in the wild-type (WT) SpCas9. For NGG PAM recognition, xCas9 applies a strategy similar to WT SpCas9. Moreover, biochemical and cell-based genome editing experiments pinpointed the critical roles of the E1219V mutation for PAM expansion and the R324L, S409I, and M694I mutations for fidelity enhancement. The molecular-level characterizations of the xCas9 nuclease provide critical insights into the mechanisms of the PAM expansion and fidelity enhancement of xCas9 and could further facilitate the engineering of SpCas9 and other Cas9 orthologs.
成簇规律间隔短回文重复(CRISPR)-Cas 系统已被用作多种生物中强大的基因组编辑工具。然而,脱靶效应和前导序列相邻基序(PAM)的兼容性限制了这些系统的治疗应用。最近,一种酿脓链球菌 Cas9(SpCas9)变体 xCas9 进化而来,具有广泛的 PAM 兼容性和高 DNA 保真度。通过确定多个与单引导 RNA(sgRNA)和含有不同 PAM 序列(TGG、CGG、TGA 和 TGC)的双链 DNA 复合物的 xCas9 结构,我们揭示了 xCas9 的 PAM 扩展和保真度增强的分子机制。xCas9 遵循一种独特的双模 PAM 识别机制。对于非-NGG PAM 识别,xCas9 在 DNA 识别结构域中触发显著的结构重排,并使关键 PAM 相互作用残基 R1335 发生旋转;这种机制在野生型(WT)SpCas9 中尚未观察到。对于 NGG PAM 识别,xCas9 采用与 WT SpCas9 相似的策略。此外,生化和基于细胞的基因组编辑实验指出,E1219V 突变对于 PAM 扩展至关重要,而 R324L、S409I 和 M694I 突变对于保真度增强至关重要。xCas9 核酸酶的分子水平表征为 xCas9 的 PAM 扩展和保真度增强机制提供了重要的见解,并可能进一步促进 SpCas9 和其他 Cas9 同源物的工程改造。
Cell Res. 2019-1-21
Nucleic Acids Res. 2020-12-2
Arch Insect Biochem Physiol. 2020-2-6
Sheng Wu Gong Cheng Xue Bao. 2021-4-25
Mol Plant. 2019-3-27
J Chem Inf Model. 2022-6-27
Int J Mol Sci. 2025-6-12
Nucleic Acids Res. 2025-6-20
Elife. 2025-2-10
bioRxiv. 2025-1-2
Nucleic Acids Res. 2024-7-5
Appl Microbiol Biotechnol. 2024-2-14
J Transl Med. 2023-10-24
Microb Cell Fact. 2023-5-10
CRISPR J. 2018-6
Cell Res. 2019-1-21
Appl Environ Microbiol. 2018-11-15
Science. 2018-8-30
J Am Chem Soc. 2018-6-13
Nat Biotechnol. 2018-1-29