Suppr超能文献

MAX、MXene、纳米MAX以及源自纳米MAX的MXene在微波吸收和锂离子电池阳极应用方面的比较评估

Comparative evaluation of MAX, MXene, NanoMAX, and NanoMAX-derived-MXene for microwave absorption and Li ion battery anode applications.

作者信息

Sengupta Arundhati, Rao B V Bhaskara, Sharma Neha, Parmar Swati, Chavan Vinila, Singh Sachin Kumar, Kale Sangeeta, Ogale Satishchandra

机构信息

Department of Physics and Centre for Energy Science, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra-411008, India.

出版信息

Nanoscale. 2020 Apr 21;12(15):8466-8476. doi: 10.1039/c9nr10980c. Epub 2020 Apr 3.

Abstract

MAX and MXene phases possess unique physical properties, encompassing the realms of both ceramics and metals. Their nanolaminated layered configuration, high anisotropic electrical conductivity, and ability to scatter electromagnetic radiation are beneficial in multiple applications. Herein, detailed applications of MAX and MXene are studied in the fields of microwave absorption and Li ion batteries (LIB). In particular, coatings based on MAX, MXene, ball-milled NanoMAX, and NanoMAX-derived-MXene (MXene-N) and their composites are examined in terms of their comparative efficacy for the aforesaid applications. NanoMAX and MXene-N based composites with graphite exhibit superior performance with specific reflection loss values (representing absorbance when measured with metal-backing) of -21.4 and -19 dB cm g, respectively, as compared to their bulk counterparts, that too with a low density (0.63 g cm) and very small thickness (0.03 mm). These performance improvements in absorbance in only 30 μm coatings can be attributed to reflective losses compounded with multiple internal reflections within the nanocomposite intensified by dielectric losses, arising from high interface density. The pristine samples were also studied for their performance as Li ion battery anodes. Herein, MXene-N exhibits the best performance with a specific capacity of 330 mA h g at 100 mA g and excellent cycling stability tested up to 1000 cycles.

摘要

MAX相和MXene相具有独特的物理性质,涵盖了陶瓷和金属领域。它们的纳米层状结构、高各向异性电导率以及散射电磁辐射的能力在多种应用中具有优势。本文研究了MAX和MXene在微波吸收和锂离子电池(LIB)领域的详细应用。特别是,对基于MAX、MXene、球磨纳米MAX以及纳米MAX衍生的MXene(MXene-N)及其复合材料的涂层在上述应用中的比较效能进行了研究。与块状材料相比,基于纳米MAX和MXene-N的石墨复合材料表现出卓越的性能,其特定反射损耗值(在有金属背衬测量时代表吸光度)分别为-21.4和-19 dB cm g,而且密度低(0.63 g cm)且厚度非常小(0.03 mm)。仅30μm涂层中吸光度的这些性能提升可归因于反射损耗与纳米复合材料内部多次反射的叠加,而多次反射因高界面密度产生的介电损耗而增强。还研究了原始样品作为锂离子电池负极的性能。在此,MXene-N表现出最佳性能,在100 mA g下比容量为330 mA h g,并且在高达1000次循环的测试中具有出色的循环稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验