Guo Ying, Zhang Deyang, Bai Zuxue, Yang Ya, Wang Yangbo, Cheng Jinbing, Chu Paul K, Luo Yongsong
Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.
Dalton Trans. 2022 Jan 25;51(4):1423-1433. doi: 10.1039/d1dt03718h.
The electron and ion conductivities of anode materials such as MnO affect critically the properties of anodes in Li-ion batteries. Herein, a three-dimensional (3D) nanofiber network (MnO-MXene/CNFs) for high-speed electron and ion transport with a MnO surface anchored and embedded inside is designed electrospinning manganese ion-modified MXene nanosheets and subsequent carbonization. Ion transport analysis reveals improved Li transport on the MnO-MXene/CNF electrode and first-principles density functional theory (DFT) calculation elucidates the Li adsorption and storage mechanism. The surface-anchored MnO nanoparticles form extremely strong bonds with the nanofibers, and the internally embedded MnO nanoparticles, due to the fiber confinement effect, ensure the structural stability during charging and discharging, achieving the so-called dual stabilization strategies for cyclic fluctuation. By electrospinning, self-restacking of MXene flakes can be prevented, thereby giving rise to a larger surface area and more accessible active sites on the flexible anode. Benefiting from the 3D network with excellent conductivity and stability, at high current densities, the MnO-MXene/CNF anode exhibits outstanding electrochemical characteristics. Even after 2000 cycles, a reversible capacity of 1098 mA h g can be obtained at 2 A g with only 0.007208% decay rate. The MnO-MXene/CNF anode also shows a significant rate performance such as 1268 mA h g at 2 A g and 1137 mA h g at 5 A g corresponding to an area specific capacity of 2.536 mA h cm at 4 mA cm and 2.274 mA h cm at 10 mA cm, respectively. The results indicate that the MnO-MXene/CNF anode has excellent Li-ion storage properties and great commercial potential.
诸如MnO等阳极材料的电子和离子电导率对锂离子电池中阳极的性能有着至关重要的影响。在此,通过静电纺丝锰离子改性的MXene纳米片并随后进行碳化,设计了一种用于高速电子和离子传输的三维(3D)纳米纤维网络(MnO-MXene/CNFs),其中MnO表面被锚定并嵌入内部。离子传输分析表明MnO-MXene/CNF电极上的锂传输得到改善,第一性原理密度泛函理论(DFT)计算阐明了锂的吸附和存储机制。表面锚定的MnO纳米颗粒与纳米纤维形成极强的键,而内部嵌入的MnO纳米颗粒由于纤维限制效应,确保了充放电过程中的结构稳定性,实现了所谓的循环波动双重稳定策略。通过静电纺丝,可以防止MXene薄片的自堆叠,从而在柔性阳极上产生更大的表面积和更多可及的活性位点。受益于具有优异导电性和稳定性的3D网络,在高电流密度下,MnO-MXene/CNF阳极表现出出色的电化学特性。即使经过2000次循环,在2 A g的电流密度下仍可获得1098 mA h g的可逆容量,衰减率仅为0.007208%。MnO-MXene/CNF阳极还显示出显著的倍率性能,例如在2 A g时为1268 mA h g,在5 A g时为1137 mA h g,分别对应于在4 mA cm时的面积比容量为2.536 mA h cm和在10 mA cm时为2.274 mA h cm。结果表明,MnO-MXene/CNF阳极具有优异的锂离子存储性能和巨大的商业潜力。