Am J Epidemiol. 2020 Sep 1;189(9):987-996. doi: 10.1093/aje/kwaa050.
In this paper, we evaluate 11 measures of inequality, d(p1, p2), between 2 proportions p1 and p2, some of which are new to the health disparities literature. These measures are selected because they are continuous, nonnegative, equal to 0 if and only if |p1 - p2| = 0, and maximal when |p1 - p2| = 1. They are also symmetrical [d(p1, p2) = d(p2, p1)] and complement-invariant [d(p1, p2) = d(1 - p2, 1 - p1)]. To study intermeasure agreement, 5 of the 11 measures, including the absolute difference, are retained, because they remain finite and are maximal if and only if |p1 - p2| = 1. Even when the 2 proportions are assumed to be drawn at random from a shared distribution-interpreted as the absence of an avoidable difference-the expected value of d(p1, p2) depends on the shape of the distribution (and the choice of d) and can be quite large. To allow for direct comparisons among measures, we propose a standard measurement unit akin to a z score. For skewed underlying beta distributions, 4 of the 5 retained measures, once standardized, offer more conservative assessments of the magnitude of inequality than the absolute difference. We conclude that, even for measures that share the highlighted mathematical properties, magnitude comparisons are most usefully assessed relative to an elicited or estimated underlying distribution for the 2 proportions.
本文评估了 11 种用于衡量两个比例 p1 和 p2 之间不平等程度的指标 d(p1,p2),其中一些指标在健康差异文献中是新的。这些指标被选择是因为它们是连续的、非负的,当且仅当|p1-p2|=0 时等于 0,并且当|p1-p2|=1 时达到最大值。它们也是对称的[d(p1,p2)=d(p2,p1)]和互补不变的[d(p1,p2)=d(1-p2,1-p1)]。为了研究不同指标之间的一致性,保留了 11 个指标中的 5 个,包括绝对差异,因为它们保持有限并且当且仅当|p1-p2|=1 时达到最大值。即使两个比例被假设是从共享分布中随机抽取的-解释为没有可避免的差异-那么 d(p1,p2)的期望值取决于分布的形状(以及 d 的选择),并且可能非常大。为了允许对不同指标进行直接比较,我们提出了一种类似于 z 分数的标准度量单位。对于偏态的基础 beta 分布,5 个保留指标中的 4 个,一旦标准化,与绝对差异相比,对不平等程度的评估更为保守。我们得出结论,即使对于具有突出数学性质的指标,幅度比较也最适合相对于两个比例的得出或估计的基础分布进行评估。