Urai Mizuki, Miyagawa Kazuya, Sasaki Takahiko, Taniguchi Hiromi, Kanoda Kazushi
Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan.
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
Phys Rev Lett. 2020 Mar 20;124(11):117204. doi: 10.1103/PhysRevLett.124.117204.
The behavior of interacting spins subject to randomness is a longstanding issue and the emergence of exotic quantum states is among intriguing theoretical predictions. We show how a quantum-disordered phase emerges from a classical antiferromagnet by controlled randomness. ^{1}H NMR of a successively x-ray-irradiated organic Mott insulator finds that the magnetic order collapses into a spin-glass-like state, immediately after a slight amount of disorder centers are created, and evolves to a gapless quantum-disordered state without spin freezing, spin gap, or critical slowing down, as reported by T. Furukawa et al. [Phys. Rev. Lett. 115, 077001 (2015)]PRLTAO0031-900710.1103/PhysRevLett.115.077001 through sequential reductions in the spin freezing temperature and moment.
受随机性影响的相互作用自旋的行为是一个长期存在的问题,奇异量子态的出现是有趣的理论预测之一。我们展示了通过可控的随机性,量子无序相如何从经典反铁磁体中出现。如T. Furukawa等人[《物理评论快报》115, 077001 (2015)]所报道,对连续进行X射线辐照的有机莫特绝缘体进行的¹H NMR研究发现,在产生少量无序中心后,磁有序立即崩塌为类似自旋玻璃的状态,并演变为无自旋冻结、无自旋能隙或无临界慢化的无隙量子无序状态,这是通过自旋冻结温度和磁矩的连续降低实现的。