Fogarty Thomás, Deffner Sebastian, Busch Thomas, Campbell Steve
Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA.
Phys Rev Lett. 2020 Mar 20;124(11):110601. doi: 10.1103/PhysRevLett.124.110601.
A remarkable feature of quantum many-body systems is the orthogonality catastrophe that describes their extensively growing sensitivity to local perturbations and plays an important role in condensed matter physics. Here we show that the dynamics of the orthogonality catastrophe can be fully characterized by the quantum speed limit and, more specifically, that any quenched quantum many-body system, whose variance in ground state energy scales with the system size, exhibits the orthogonality catastrophe. Our rigorous findings are demonstrated by two paradigmatic classes of many-body systems-the trapped Fermi gas and the long-range interacting Lipkin-Meshkov-Glick spin model.
量子多体系统的一个显著特征是正交性灾难,它描述了系统对局部微扰的敏感性呈指数增长,并在凝聚态物理中起着重要作用。在此,我们表明正交性灾难的动力学可以完全由量子速度极限来表征,更具体地说,任何基态能量方差随系统大小缩放的猝灭量子多体系统都会表现出正交性灾难。我们通过两类典型的多体系统——捕获费米气体和长程相互作用的利普金 - 梅什科夫 - 格利克自旋模型——证明了我们的严格发现。