Suppr超能文献

联合 CT 纹理分析和淋巴结长径比检测食管癌淋巴结转移。

Combined CT texture analysis and nodal axial ratio for detection of nodal metastasis in esophageal cancer.

机构信息

Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.

Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.

出版信息

Br J Radiol. 2020 Jul;93(1111):20190827. doi: 10.1259/bjr.20190827. Epub 2020 Apr 15.

Abstract

OBJECTIVE

To assess the accuracy of a combination of CT texture analysis (CTTA) and nodal axial ratio to detect metastatic lymph nodes (LNs) in esophageal squamous cell carcinoma (ESCC).

METHODS

The contrast-enhanced chest CT images of 78 LNs (40 metastasis, 38 benign) from 38 patients with ESCC were retrospectively analyzed. Nodal axial ratios (short-axis/long-axis diameter) were calculated. CCTA parameters (kurtosis, entropy, skewness) were extracted using commercial software (TexRAD) with fine, medium, and coarse spatial filters. Combinations of significant texture features and nodal axial ratios were entered as predictors in logistic regression models to differentiate metastatic from benign LNs, and the performance of the logistic regression models was analyzed using the area under the receiver operating characteristic curve (AUROC).

RESULTS

The mean axial ratio of metastatic LNs was significantly higher than that of benign LNs (0.81 ± 0.2 0.71 ± 0.1, = 0.005; sensitivity 82.5%, specificity 47.4%); namely, significantly more round than benign. The mean values of the entropy (all filters) and kurtosis (fine and medium) of metastatic LNs were significantly higher than those of benign LNs (all, < 0.05). Medium entropy showed the best performance in the AUROC analysis with 0.802 ( < 0.001; sensitivity 85.0%, specificity 63.2%). A binary logistic regression analysis combining the nodal axial ratio, fine entropy, and fine kurtosis identified metastatic LNs with 87.5% sensitivity and 65.8% specificity (AUROC = 0.855, < 0.001).

CONCLUSION

The combination of CTTA features and the axial ratio of LNs has the potential to differentiate metastatic from benign LNs and improves the sensitivity for detection of LN metastases in ESCC.

ADVANCES IN KNOWLEDGE

The combination of CTTA and nodal axial ratio has improved CT sensitivity (up to 87.5%) for the diagnosis of metastatic LNs in esophageal cancer.

摘要

目的

评估 CT 纹理分析(CTTA)与淋巴结轴比相结合以检测食管鳞状细胞癌(ESCC)中转移性淋巴结(LNs)的准确性。

方法

回顾性分析 38 例 ESCC 患者 78 个 LN(40 个转移,38 个良性)的增强胸部 CT 图像。计算淋巴结轴比(短轴/长轴直径)。使用商业软件(TexRAD)提取 CCTA 参数(峰度、熵、偏度),并使用精细、中等和粗糙的空间滤波器。将有意义的纹理特征和淋巴结轴比的组合作为预测因子输入逻辑回归模型,以区分转移性和良性 LNs,并使用受试者工作特征曲线下面积(AUROC)分析逻辑回归模型的性能。

结果

转移性 LNs 的平均轴向比显著高于良性 LNs(0.81 ± 0.2 vs. 0.71 ± 0.1, = 0.005;敏感性 82.5%,特异性 47.4%);即,明显比良性更圆。转移性 LNs 的平均熵(所有滤波器)和峰度(精细和中等)值均显著高于良性 LNs(均<0.05)。中等熵在 AUROC 分析中表现最佳,AUROC 为 0.802(<0.001;敏感性 85.0%,特异性 63.2%)。结合淋巴结轴比、精细熵和精细峰度的二元逻辑回归分析,以 87.5%的敏感性和 65.8%的特异性识别转移性 LNs(AUROC=0.855,<0.001)。

结论

CTTA 特征与 LNs 轴比的结合具有区分转移性和良性 LNs 的潜力,并提高了 ESCC 中 LNs 转移检测的敏感性。

知识进展

CTTA 与淋巴结轴比的结合提高了 CT 对食管癌转移性 LNs 的诊断敏感性(高达 87.5%)。

相似文献

引用本文的文献

7
Controversies in EUS: Do we need miniprobes?超声内镜的争议:我们需要微型探头吗?
Endosc Ultrasound. 2021 Jul-Aug;10(4):246-269. doi: 10.4103/EUS-D-20-00252.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验