Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States.
Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
ACS Infect Dis. 2020 May 8;6(5):1204-1213. doi: 10.1021/acsinfecdis.0c00011. Epub 2020 Apr 15.
Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α-β tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1. It is therefore surprising that machine learning based analysis predicts that CCL20 and CXCL4's α-helices are membrane disruptive, while XCL1's helix is not. XCL1, however, is the only chemokine known to be a metamorphic protein which can interconvert reversibly between two distinct native structures (a β-sheet dimer and the α-β chemokine structure). Here, we investigate XCL1's antimicrobial mechanism of action with a focus on the role of metamorphic folding. We demonstrate that XCL1 is a molecular "Swiss army knife" that can refold into different structures for distinct context-dependent functions: whereas the α-β chemokine structure controls cell migration by binding to G-Protein Coupled Receptors (GPCRs), we find using small angle X-ray scattering (SAXS) that only the β-sheet and unfolded XCL1 structures can induce negative Gaussian curvature (NGC) in membranes, the type of curvature topologically required for membrane permeation. Moreover, the membrane remodeling activity of XCL1's β-sheet structure is strongly dependent on membrane composition: XCL1 selectively remodels bacterial model membranes but not mammalian model membranes. Interestingly, XCL1 also permeates fungal model membranes and exhibits anti- activity , in contrast to the usual mode of antifungal defense which requires Th17 mediated cell-based responses. These observations suggest that metamorphic XCL1 is capable of a versatile multimodal form of antimicrobial defense.
抗菌肽(AMPs)是一类通过优先破坏细胞膜来杀死病原体的分子。趋化因子是一类信号蛋白家族,它们指导免疫细胞迁移,并具有保守的α-β三级结构。最近,人们发现趋化因子的一部分也可以作为 AMPs 发挥作用,包括 CCL20、CXCL4 和 XCL1。因此,令人惊讶的是,基于机器学习的分析预测,CCL20 和 CXCL4 的α-螺旋具有破坏细胞膜的作用,而 XCL1 的螺旋则没有。然而,XCL1 是唯一已知的可相互转化的变形蛋白,它可以在两种不同的天然结构(β-折叠二聚体和α-β趋化因子结构)之间可逆地相互转化。在这里,我们研究了 XCL1 的抗菌作用机制,重点研究了变形折叠的作用。我们证明,XCL1 是一种分子“瑞士军刀”,可以重新折叠成不同的结构,以适应不同的上下文相关功能:虽然 α-β 趋化因子结构通过与 G 蛋白偶联受体(GPCR)结合来控制细胞迁移,但我们发现,使用小角度 X 射线散射(SAXS),只有β-折叠和未折叠的 XCL1 结构才能诱导膜中的负高斯曲率(NGC),这是拓扑上穿透膜所需的曲率类型。此外,XCL1 的β-折叠结构的膜重塑活性强烈依赖于膜组成:XCL1 选择性地重塑细菌模型膜,但不重塑哺乳动物模型膜。有趣的是,XCL1 还穿透真菌模型膜并表现出抗真菌活性,与通常需要 Th17 介导的细胞反应的抗真菌防御模式相反。这些观察结果表明,变形的 XCL1 能够进行灵活多样的多模态抗菌防御。