Suppr超能文献

利用机器学习在未发现的肽序列空间中绘制膜活性图谱。

Mapping membrane activity in undiscovered peptide sequence space using machine learning.

作者信息

Lee Ernest Y, Fulan Benjamin M, Wong Gerard C L, Ferguson Andrew L

机构信息

Department of Bioengineering, University of California, Los Angeles, CA 90095.

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

出版信息

Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13588-13593. doi: 10.1073/pnas.1609893113. Epub 2016 Nov 14.

Abstract

There are some ∼1,100 known antimicrobial peptides (AMPs), which permeabilize microbial membranes but have diverse sequences. Here, we develop a support vector machine (SVM)-based classifier to investigate ⍺-helical AMPs and the interrelated nature of their functional commonality and sequence homology. SVM is used to search the undiscovered peptide sequence space and identify Pareto-optimal candidates that simultaneously maximize the distance σ from the SVM hyperplane (thus maximize its "antimicrobialness") and its ⍺-helicity, but minimize mutational distance to known AMPs. By calibrating SVM machine learning results with killing assays and small-angle X-ray scattering (SAXS), we find that the SVM metric σ correlates not with a peptide's minimum inhibitory concentration (MIC), but rather its ability to generate negative Gaussian membrane curvature. This surprising result provides a topological basis for membrane activity common to AMPs. Moreover, we highlight an important distinction between the maximal recognizability of a sequence to a trained AMP classifier (its ability to generate membrane curvature) and its maximal antimicrobial efficacy. As mutational distances are increased from known AMPs, we find AMP-like sequences that are increasingly difficult for nature to discover via simple mutation. Using the sequence map as a discovery tool, we find a unexpectedly diverse taxonomy of sequences that are just as membrane-active as known AMPs, but with a broad range of primary functions distinct from AMP functions, including endogenous neuropeptides, viral fusion proteins, topogenic peptides, and amyloids. The SVM classifier is useful as a general detector of membrane activity in peptide sequences.

摘要

已知约有1100种抗菌肽(AMPs),它们能使微生物膜通透,但序列多样。在此,我们开发了一种基于支持向量机(SVM)的分类器,以研究α - 螺旋抗菌肽及其功能共性和序列同源性之间的相互关系。支持向量机用于搜索未发现的肽序列空间,并识别帕累托最优候选序列,这些序列能同时最大化与支持向量机超平面的距离σ(从而最大化其“抗菌性”)及其α - 螺旋性,但使与已知抗菌肽的突变距离最小化。通过用杀菌试验和小角X射线散射(SAXS)校准支持向量机的机器学习结果,我们发现支持向量机指标σ与肽的最低抑菌浓度(MIC)无关,而是与其产生负高斯膜曲率的能力相关。这一惊人结果为抗菌肽共有的膜活性提供了拓扑学基础。此外,我们强调了序列对训练有素的抗菌肽分类器的最大可识别性(其产生膜曲率的能力)与其最大抗菌功效之间的重要区别。随着与已知抗菌肽的突变距离增加,我们发现类似抗菌肽的序列越来越难以通过简单突变被自然发现。利用序列图谱作为发现工具,我们发现了一类出乎意料的多样化序列分类,它们与已知抗菌肽一样具有膜活性,但具有广泛的不同于抗菌肽功能的主要功能,包括内源性神经肽、病毒融合蛋白、拓扑肽和淀粉样蛋白。支持向量机分类器可作为肽序列中膜活性的通用检测器。

相似文献

3
Machine learning-enabled discovery and design of membrane-active peptides.基于机器学习的膜活性肽的发现和设计。
Bioorg Med Chem. 2018 Jun 1;26(10):2708-2718. doi: 10.1016/j.bmc.2017.07.012. Epub 2017 Jul 8.
5
Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents.合成阳离子两亲性 α-螺旋肽作为抗菌剂。
Biomaterials. 2011 Mar;32(8):2204-12. doi: 10.1016/j.biomaterials.2010.11.054. Epub 2010 Dec 18.
9
Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.源自MSI-78的膜活性十二肽的抗菌特性。
Biochim Biophys Acta. 2015 May;1848(5):1139-46. doi: 10.1016/j.bbamem.2015.02.001. Epub 2015 Feb 10.

引用本文的文献

3
Machine Learning-Assisted Prediction and Generation of Antimicrobial Peptides.机器学习辅助的抗菌肽预测与生成
Small Sci. 2025 Mar 6;5(6):2400579. doi: 10.1002/smsc.202400579. eCollection 2025 Jun.
6
Membrane Association of Intrinsically Disordered Proteins.内在无序蛋白质的膜结合
Annu Rev Biophys. 2025 May;54(1):275-302. doi: 10.1146/annurev-biophys-070124-092816. Epub 2025 Feb 14.

本文引用的文献

1
Machine learning methods in chemoinformatics.化学信息学中的机器学习方法。
Wiley Interdiscip Rev Comput Mol Sci. 2014 Sep 1;4(5):468-481. doi: 10.1002/wcms.1183.
5
Antimicrobial peptides design by evolutionary multiobjective optimization.基于进化多目标优化的抗菌肽设计。
PLoS Comput Biol. 2013;9(9):e1003212. doi: 10.1371/journal.pcbi.1003212. Epub 2013 Sep 5.
8
propy: a tool to generate various modes of Chou's PseAAC.propy:一种生成 Chou's PseAAC 各种模式的工具。
Bioinformatics. 2013 Apr 1;29(7):960-2. doi: 10.1093/bioinformatics/btt072. Epub 2013 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验