Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK.
Glob Chang Biol. 2020 Jun;26(6):3307-3324. doi: 10.1111/gcb.15106. Epub 2020 Apr 23.
Life-history and pace-of-life syndrome theory predict that populations are comprised of individuals exhibiting different reproductive schedules and associated behavioural and physiological traits, optimized to prevailing social and environmental factors. Changing weather and social conditions provide in situ cues altering this life-history optimality; nevertheless, few studies have considered how tactical, sex-specific plasticity over an individual's lifespan varies in wild populations and influences population resilience. We examined the drivers of individual life-history schedules using 31 years of trapping data and 28 years of pedigree for the European badger (Meles meles L.), a long-lived, iteroparous, polygynandrous mammal that exhibits heterochrony in the timing of endocrinological puberty in male cubs. Our top model for the effects of environmental (social and weather) conditions during a badger's first year on pace-of-life explained <10% of variance in the ratio of fertility to age at first reproduction (F/α) and lifetime reproductive success. Conversely, sex ratio (SR) and sex-specific density explained 52.8% (males) and 91.0% (females) of variance in adult F/α ratios relative to the long-term population median F/α. Weather primarily affected the sexes at different life-history stages, with energy constraints limiting the onset of male reproduction but playing a large role in female strategic energy allocation, particularly in relation to ongoing mean temperature increases. Furthermore, the effects of social factors on age of first reproduction and year-to-year reproductive success covaried differently with sex, likely due to sex-specific responses to potential mate availability. For females, low same-sex densities favoured early primiparity; for males, instead, up to 10% of yearlings successfully mated at high same-sex densities. We observed substantial SR dynamism relating to differential mortality of life-history strategists within the population, and propose that shifting ratios of 'fast' and 'slow' life-history strategists contribute substantially to population dynamics and resilience to changing conditions.
生活史和生活方式综合征理论预测,种群由表现出不同繁殖策略和相关行为及生理特征的个体组成,这些特征是针对当前的社会和环境因素而优化的。不断变化的天气和社会条件提供了改变这种生活史最优性的现场线索;然而,很少有研究考虑个体在其生命周期内的战术性、性别特异性可塑性如何在野生种群中变化,并影响种群的恢复力。我们使用 31 年的诱捕数据和 28 年的系谱,研究了欧洲獾(Meles meles L.)个体生活史计划的驱动因素,这是一种长寿、多次繁殖、多配偶的哺乳动物,其雄性幼崽的内分泌青春期开始时间存在异时性。我们的顶级模型解释了环境(社会和天气)条件对獾第一年生活方式的影响,对生育力与首次繁殖年龄(F/α)和终生繁殖成功率之比的变异的解释不足 10%。相反,性别比例(SR)和性别特异性密度解释了成年 F/α 比值相对于长期种群中位数 F/α 的 52.8%(雄性)和 91.0%(雌性)的变异。天气主要在不同的生命史阶段影响雌雄,能量限制限制了雄性繁殖的开始,但在雌性的战略能量分配中起着重要作用,特别是与持续的平均温度升高有关。此外,社会因素对首次繁殖年龄和年复一年繁殖成功率的影响与性别不同,这可能是由于对潜在配偶可用性的性别特异性反应。对于雌性,同性密度低有利于早期初育;而对于雄性,在同性密度高的情况下,多达 10%的一年生动物成功交配。我们观察到与种群内生活史策略者的差异死亡率相关的大量 SR 动态,并且提出,快速和慢速生活史策略者的比例变化对种群动态和对变化条件的恢复力有很大贡献。