Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom.
ACS Synth Biol. 2020 May 15;9(5):993-1002. doi: 10.1021/acssynbio.9b00504. Epub 2020 Apr 9.
Proteins are versatile macromolecules with diverse structure, charge, and function. They are ideal building blocks for biomaterials for drug delivery, biosensing, or tissue engineering applications. Simultaneously, the need to develop green alternatives to chemical processes has led to renewed interest in multienzyme biocatalytic routes to fine, specialty, and commodity chemicals. Therefore, a method to reliably assemble protein complexes using protein-protein interactions would facilitate the rapid production of new materials. Here we show a method for modular assembly of protein materials using a supercharged protein as a scaffolding "hub" onto which target proteins bearing oppositely charged domains have been self-assembled. The physical properties of the material can be tuned through blending and heating and disassembly triggered using changes in pH or salt concentration. The system can be extended to the synthesis of living materials. Our modular method can be used to reliably direct the self-assembly of proteins using small charged tag domains that can be easily encoded in a fusion protein.
蛋白质是具有多种结构、电荷和功能的多功能大分子。它们是用于药物输送、生物传感或组织工程应用的生物材料的理想构建块。同时,开发化学工艺的绿色替代品的需求也促使人们重新关注多酶生物催化途径来生产精细、特殊和大宗商品化学品。因此,有一种方法可以使用蛋白质-蛋白质相互作用可靠地组装蛋白质复合物,这将有助于快速生产新材料。在这里,我们展示了一种使用超荷电蛋白作为支架“中心”的模块化组装蛋白质材料的方法,目标蛋白带有相反电荷的结构域已经在其上自组装。通过混合和加热可以调节材料的物理性质,通过改变 pH 值或盐浓度可以触发其解组装。该系统可以扩展到活材料的合成。我们的模块化方法可以用于使用小的带电标签结构域可靠地指导蛋白质的自组装,这些标签结构域可以很容易地在融合蛋白中编码。