Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States.
Fralin Biomedical Research Institute, Virginia Tech University, Roanoke, Virginia 24016, United States.
Biomacromolecules. 2024 Aug 12;25(8):4639-4662. doi: 10.1021/acs.biomac.4c00188. Epub 2024 Jul 29.
Proteins implement many useful functions, including binding ligands with unparalleled affinity and specificity, catalyzing stereospecific chemical reactions, and directing cell behavior. Incorporating proteins into materials has the potential to imbue devices with these desirable traits. This review highlights recent advances in creating active materials by genetically fusing a self-assembling protein to a functional protein. These fusion proteins form materials while retaining the function of interest. Key advantages of this approach include elimination of a separate functionalization step during materials synthesis, uniform and dense coverage of the material by the functional protein, and stabilization of the functional protein. This review focuses on macroscale materials and discusses (i) multiple strategies for successful protein fusion design, (ii) successes and limitations of the protein fusion approach, (iii) engineering solutions to bypass any limitations, (iv) applications of protein fusion materials, including tissue engineering, drug delivery, enzyme immobilization, electronics, and biosensing, and (v) opportunities to further develop this useful technique.
蛋白质具有许多有用的功能,包括与配体结合的无与伦比的亲和力和特异性、催化立体化学反应以及指导细胞行为。将蛋白质纳入材料中有可能使设备具有这些理想的特性。本综述重点介绍了通过将自组装蛋白与功能蛋白进行基因融合来创建活性材料的最新进展。这些融合蛋白在形成材料的同时保留了感兴趣的功能。这种方法的主要优点包括在材料合成过程中消除了单独的功能化步骤、功能蛋白对材料的均匀和致密覆盖以及功能蛋白的稳定化。本综述重点讨论了宏观材料,并讨论了(i)成功的蛋白质融合设计的多种策略,(ii)蛋白质融合方法的成功和局限性,(iii)克服任何局限性的工程解决方案,(iv)蛋白质融合材料的应用,包括组织工程、药物输送、酶固定化、电子和生物传感,以及(v)进一步发展这种有用技术的机会。