Suppr超能文献

交叉信号:微血管中的生物活性脂质。

Crossing signals: bioactive lipids in the microvasculature.

机构信息

Division of Cardiology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.

Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.

出版信息

Am J Physiol Heart Circ Physiol. 2020 May 1;318(5):H1185-H1197. doi: 10.1152/ajpheart.00706.2019. Epub 2020 Apr 3.

Abstract

The primary function of the arterial microvasculature is to ensure that regional perfusion of blood flow is matched to the needs of the tissue bed. This critical physiological mechanism is tightly controlled and regulated by a variety of vasoactive compounds that are generated and released from the vascular endothelium. Although these substances are required for modulating vascular tone, they also influence the surrounding tissue and have an overall effect on vascular, as well as parenchymal, homeostasis. Bioactive lipids, fatty acid derivatives that exert their effects through signaling pathways, are included in the list of vasoactive compounds that modulate the microvasculature. Although lipids were identified as important vascular messengers over three decades ago, their specific role within the microvascular system is not well defined. Thorough understanding of these pathways and their regulation is not only essential to gain insight into their role in cardiovascular disease but is also important for preventing vascular dysfunction following cancer treatment, a rapidly growing problem in medical oncology. The purpose of this review is to discuss how biologically active lipids, specifically prostanoids, epoxyeicosatrienoic acids, sphingolipids, and lysophospholipids, contribute to vascular function and signaling within the endothelium. Methods for quantifying lipids will be briefly discussed, followed by an overview of the various lipid families. The cross talk in signaling between classes of lipids will be discussed in the context of vascular disease. Finally, the potential clinical implications of these lipid families will be highlighted.

摘要

动脉微循环的主要功能是确保血液区域性灌注与组织床的需求相匹配。这种关键的生理机制受到各种血管活性化合物的严格控制和调节,这些化合物是由血管内皮细胞产生和释放的。尽管这些物质对于调节血管张力是必需的,但它们也会影响周围组织,并对血管以及实质器官的稳态产生整体影响。生物活性脂质是一类通过信号通路发挥作用的脂肪酸衍生物,属于调节微循环的血管活性化合物之列。尽管脂质在三十多年前就被确定为重要的血管信使,但它们在微血管系统中的具体作用尚未明确。深入了解这些途径及其调节不仅对于洞察它们在心血管疾病中的作用至关重要,而且对于预防癌症治疗后血管功能障碍也很重要,这是医学肿瘤学中一个快速增长的问题。本文旨在讨论生物活性脂质(特别是前列腺素、环氧二十碳三烯酸、鞘脂和溶血磷脂)如何在血管内皮中促进血管功能和信号传递。本文将简要讨论脂质的定量方法,然后概述各种脂质家族。本文将在血管疾病的背景下讨论脂质类之间的信号交叉对话。最后,将强调这些脂质家族的潜在临床意义。

相似文献

1
Crossing signals: bioactive lipids in the microvasculature.
Am J Physiol Heart Circ Physiol. 2020 May 1;318(5):H1185-H1197. doi: 10.1152/ajpheart.00706.2019. Epub 2020 Apr 3.
2
Sphingolipids and the orchestration of endothelium-derived vasoactive factors: when endothelial function demands greasing.
Mol Cells. 2010 Feb 28;29(2):105-11. doi: 10.1007/s10059-010-0042-y. Epub 2010 Jan 29.
3
Mammalian lipids: structure, synthesis and function.
Essays Biochem. 2021 Nov 2;65(5):813-845. doi: 10.1042/EBC20200067.
4
Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction.
Mol Cell Endocrinol. 2016 Jan 5;419:44-59. doi: 10.1016/j.mce.2015.09.033. Epub 2015 Nov 2.
5
Lipid metabolism in Trypanosoma cruzi: A review.
Mol Biochem Parasitol. 2020 Nov;240:111324. doi: 10.1016/j.molbiopara.2020.111324. Epub 2020 Sep 20.
6
Polar lipids in human meibomian gland secretions.
Curr Eye Res. 2003 Feb;26(2):89-94. doi: 10.1076/ceyr.26.2.89.14515.
7
The Interplay of Lipid Signaling in Musculoskeletal Cross Talk: Implications for Health and Disease.
Methods Mol Biol. 2024;2816:1-11. doi: 10.1007/978-1-0716-3902-3_1.
8
Distribution of bioactive lipid mediators in human skin.
J Invest Dermatol. 2015 Jun;135(6):1510-1520. doi: 10.1038/jid.2015.41. Epub 2015 Feb 10.
9
Alterations in complex lipids in tumor tissue of patients with colorectal cancer.
Lipids Health Dis. 2021 Aug 4;20(1):85. doi: 10.1186/s12944-021-01512-x.
10
A mass spectrometry-based method for the assay of ceramide synthase substrate specificity.
Anal Biochem. 2015 Jun 1;478:96-101. doi: 10.1016/j.ab.2015.02.016. Epub 2015 Feb 26.

引用本文的文献

本文引用的文献

1
Manipulation of the Sphingolipid Rheostat Influences the Mediator of Flow-Induced Dilation in the Human Microvasculature.
J Am Heart Assoc. 2019 Sep 3;8(17):e013153. doi: 10.1161/JAHA.119.013153. Epub 2019 Aug 29.
2
Molecular mechanism of lysophosphatidic acid-induced hypertensive response.
Sci Rep. 2019 Feb 25;9(1):2662. doi: 10.1038/s41598-019-39041-4.
3
Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association.
Circulation. 2019 Mar 5;139(10):e56-e528. doi: 10.1161/CIR.0000000000000659.
4
Lysophosphatidic acid acts on LPA receptor to increase H O during flow-induced dilation in human adipose arterioles.
Br J Pharmacol. 2018 Nov;175(22):4266-4280. doi: 10.1111/bph.14492. Epub 2018 Oct 11.
5
Integrated Human Evaluation of the Lysophosphatidic Acid Pathway as a Novel Therapeutic Target in Atherosclerosis.
Mol Ther Methods Clin Dev. 2018 Jun 27;10:17-28. doi: 10.1016/j.omtm.2018.05.003. eCollection 2018 Sep 21.
6
Sphingolipids and their metabolism in physiology and disease.
Nat Rev Mol Cell Biol. 2018 Mar;19(3):175-191. doi: 10.1038/nrm.2017.107. Epub 2017 Nov 22.
7
Sphingolipids and Redox Signaling in Renal Regulation and Chronic Kidney Diseases.
Antioxid Redox Signal. 2018 Apr 1;28(10):1008-1026. doi: 10.1089/ars.2017.7129. Epub 2018 Jan 9.
8
Cardiac-specific inactivation of LPP3 in mice leads to myocardial dysfunction and heart failure.
Redox Biol. 2018 Apr;14:261-271. doi: 10.1016/j.redox.2017.09.015. Epub 2017 Sep 28.
9
S1PR1 (Sphingosine-1-Phosphate Receptor 1) Signaling Regulates Blood Flow and Pressure.
Hypertension. 2017 Aug;70(2):426-434. doi: 10.1161/HYPERTENSIONAHA.117.09088. Epub 2017 Jun 12.
10
Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40.
Nat Struct Mol Biol. 2017 Jul;24(7):570-577. doi: 10.1038/nsmb.3417. Epub 2017 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验