Suppr超能文献

硅与动植物相互作用:构建一个进化框架

Silicon and Plant-Animal Interactions: Towards an Evolutionary Framework.

作者信息

Katz Ofir

机构信息

Dead Sea and Arava Science Center, Mt. Masada, Tamar Regional Council, Tamar 86910, Israel.

出版信息

Plants (Basel). 2020 Apr 1;9(4):430. doi: 10.3390/plants9040430.

Abstract

Herbivory is fundamental in ecology, being a major driver of ecosystem structure and functioning. Plant Si and phytoliths play a significant antiherbivory role, the understanding of which and of its evolutionary context will increase our understanding of this phenomenon, its origins, and its significance for past, extant, and future ecosystems. To achieve this goal, we need a superdisciplinary evolutionary framework connecting the role of Si in plant-herbivore interactions, in global processes, and in plant and herbivore evolution. To do this properly, we should acknowledge and incorporate into our work some basic facts that are too often overlooked. First, there is great taxonomic variance both in plant Si contents, forms, and roles, but also in herbivore responses, dietary preferences, and in fossil evidence. Second, species and their traits, as well as whole ecosystems, should be seen in the context of their entire evolutionary history and may therefore reflect not only adaptations to extant selective factors but also anachronistic traits. Third, evolutionary history and evolutionary transitions are complex, resulting in true and apparent asynchronisms. Fourth, evolution and ecology are multiscalar, in which various phenomena and processes act at various scales. Taking these issues into consideration will improve our ability to develop this needed theoretical framework and will bring us closer to gaining a more complete understanding of one of the most exciting and elusive phenomena in plant biology and ecology.

摘要

食草作用在生态学中至关重要,是生态系统结构和功能的主要驱动力。植物硅和植硅体发挥着重要的抗食草作用,了解这一点及其进化背景将增进我们对这一现象、其起源以及对过去、现存和未来生态系统的重要性的理解。为实现这一目标,我们需要一个跨学科的进化框架,将硅在植物 - 食草动物相互作用、全球过程以及植物和食草动物进化中的作用联系起来。要妥善做到这一点,我们应该承认并将一些常常被忽视的基本事实纳入我们的工作中。首先,植物硅含量、形式和作用,以及食草动物的反应、饮食偏好和化石证据在分类学上都存在很大差异。其次,物种及其特征以及整个生态系统应在其整个进化历史的背景下看待,因此它们不仅可能反映对现存选择因素的适应,还可能反映过时的特征。第三,进化历史和进化转变很复杂,会导致真实的和明显的不同步。第四,进化和生态是多尺度的,其中各种现象和过程在不同尺度上起作用。考虑到这些问题将提高我们构建这一所需理论框架的能力,并使我们更接近于更全面地理解植物生物学和生态学中最令人兴奋且难以捉摸的现象之一。

相似文献

1
Silicon and Plant-Animal Interactions: Towards an Evolutionary Framework.
Plants (Basel). 2020 Apr 1;9(4):430. doi: 10.3390/plants9040430.
2
Herbivore regulation of plant abundance in aquatic ecosystems.
Biol Rev Camb Philos Soc. 2017 May;92(2):1128-1141. doi: 10.1111/brv.12272. Epub 2016 Apr 8.
3
Eco-evolutionary dynamics of plant-herbivore communities: incorporating plant phenotypic plasticity.
Curr Opin Insect Sci. 2016 Apr;14:40-45. doi: 10.1016/j.cois.2016.01.006. Epub 2016 Jan 27.
4
Plant-insect-microbe interaction: A love triangle between enemies in ecosystem.
Sci Total Environ. 2020 Jan 10;699:134181. doi: 10.1016/j.scitotenv.2019.134181. Epub 2019 Sep 3.
5
The impact of plant chemical diversity on plant-herbivore interactions at the community level.
Oecologia. 2016 Aug;181(4):1199-208. doi: 10.1007/s00442-016-3629-y. Epub 2016 Apr 29.
6
A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology.
Ecology. 2020 Feb;101(2):e02924. doi: 10.1002/ecy.2924. Epub 2020 Jan 8.
7
Silicon Supplementation of Rescuegrass Reduces Herbivory by a Grasshopper.
Front Plant Sci. 2019 May 24;10:671. doi: 10.3389/fpls.2019.00671. eCollection 2019.
8
Overcompensation for insect herbivory: a review and meta-analysis of the evidence.
Ecology. 2019 Mar;100(3):e02585. doi: 10.1002/ecy.2585.
9
Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.
J Proteomics. 2011 Dec 10;75(1):284-305. doi: 10.1016/j.jprot.2011.07.010. Epub 2011 Jul 23.
10
Evolutionary changes in plant tolerance against herbivory through a resurrection experiment.
J Evol Biol. 2014 Mar;27(3):488-96. doi: 10.1111/jeb.12307. Epub 2014 Jan 13.

引用本文的文献

1
Convergent evidence for the temperature-dependent emergence of silicification in terrestrial plants.
Nat Commun. 2025 Jan 29;16(1):1155. doi: 10.1038/s41467-025-56438-0.
3
Silicon in the Soil-Plant Continuum: Intricate Feedback Mechanisms within Ecosystems.
Plants (Basel). 2021 Mar 30;10(4):652. doi: 10.3390/plants10040652.

本文引用的文献

1
Plant Silicon and Phytolith Research and the Earth-Life Superdiscipline.
Front Plant Sci. 2018 Sep 5;9:1281. doi: 10.3389/fpls.2018.01281. eCollection 2018.
3
Ecological and evolutionary legacy of megafauna extinctions.
Biol Rev Camb Philos Soc. 2018 May;93(2):845-862. doi: 10.1111/brv.12374. Epub 2017 Oct 9.
4
Phytolith carbon sequestration in global terrestrial biomes.
Sci Total Environ. 2017 Dec 15;603-604:502-509. doi: 10.1016/j.scitotenv.2017.06.107. Epub 2017 Jun 20.
5
Patterns in grass silicification: response to grazing history and defoliation.
Oecologia. 1989 Aug;80(2):268-271. doi: 10.1007/BF00380162.
6
The challenges to inferring the regulators of biodiversity in deep time.
Philos Trans R Soc Lond B Biol Sci. 2016 Apr 5;371(1691):20150216. doi: 10.1098/rstb.2015.0216.
7
The extended evolutionary synthesis: its structure, assumptions and predictions.
Proc Biol Sci. 2015 Aug 22;282(1813):20151019. doi: 10.1098/rspb.2015.1019.
8
Silica phytoliths in angiosperms: phylogeny and early evolutionary history.
New Phytol. 2015 Nov;208(3):642-6. doi: 10.1111/nph.13559. Epub 2015 Jul 2.
9
Back to the past: a new take on the timing of flowering plant diversification.
New Phytol. 2015 Jul;207(2):257-259. doi: 10.1111/nph.13462.
10
The role of biotic forces in driving macroevolution: beyond the Red Queen.
Proc Biol Sci. 2015 Jun 7;282(1808):20150186. doi: 10.1098/rspb.2015.0186.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验