Suppr超能文献

The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation.

作者信息

Hardin J

机构信息

Biophysics Group, University of California, Berkeley 94720.

出版信息

Development. 1988 Jun;103(2):317-24. doi: 10.1242/dev.103.2.317.

Abstract

It has long been thought that traction exerted by filopodia of secondary mesenchyme cells (SMCs) is a sufficient mechanism to account for elongation of the archenteron during sea urchin gastrulation. The filopodial traction hypothesis has been directly tested here by laser ablation of SMCs in gastrulae of the sea urchin, Lytechinus pictus. When SMCs are ablated at the onset of secondary invagination, the archenteron doubles in length at the normal rate of elongation, but advance of the tip of the archenteron stops at the 2/3 gastrula stage. In contrast, when all SMCs are ablated at or following the 2/3 gastrula stage, further elongation does not occur. However, if a few SMCs are allowed to remain in 2/3-3/4 gastrulae, elongation continues, although more slowly than in controls. The final length of archenterons in embryos ablated at the 1/3-1/2 gastrula stage is virtually identical to the final length of everted archenterons in LiCl-induced exogastrulae; since filopodial traction is not exerted in either case, an alternate, common mechanism of elongation probably operates in both cases. These results suggest that archenteron elongation involves two processes: (1) active, filopodia-independent elongation, which depends on active cell rearrangement and (2) filopodia-dependent elongation, which depends on mechanical tension exerted by the filopodia.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验