Suppr超能文献

相似文献

1
Biomechanical coupling facilitates spinal neural tube closure in mouse embryos.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5177-E5186. doi: 10.1073/pnas.1700934114. Epub 2017 Jun 12.
3
Valproic acid disrupts the biomechanics of late spinal neural tube closure in mouse embryos.
Mech Dev. 2018 Feb;149:20-26. doi: 10.1016/j.mod.2017.12.001. Epub 2017 Dec 7.
4
Integrin-Mediated Focal Anchorage Drives Epithelial Zippering during Mouse Neural Tube Closure.
Dev Cell. 2020 Feb 10;52(3):321-334.e6. doi: 10.1016/j.devcel.2020.01.012.
5
Hinge point emergence in mammalian spinal neurulation.
Proc Natl Acad Sci U S A. 2022 May 17;119(20):e2117075119. doi: 10.1073/pnas.2117075119. Epub 2022 May 13.
6
Hindbrain neuropore tissue geometry determines asymmetric cell-mediated closure dynamics in mouse embryos.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2023163118.
7
Non-neural surface ectodermal rosette formation and F-actin dynamics drive mammalian neural tube closure.
Biochem Biophys Res Commun. 2020 Jun 4;526(3):647-653. doi: 10.1016/j.bbrc.2020.03.138. Epub 2020 Apr 2.
8
Live-Imaging Analysis of Epithelial Zippering During Mouse Neural Tube Closure.
Methods Mol Biol. 2023;2608:147-162. doi: 10.1007/978-1-0716-2887-4_10.
9
β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation.
Development. 2014 Jan;141(1):148-57. doi: 10.1242/dev.101550. Epub 2013 Nov 27.
10
Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.
Dev Biol. 2018 Mar 15;435(2):130-137. doi: 10.1016/j.ydbio.2018.01.016. Epub 2018 Feb 2.

引用本文的文献

1
A transient contractile seam promotes epithelial sealing and sequential assembly of body segments.
Nat Commun. 2025 Apr 29;16(1):4010. doi: 10.1038/s41467-025-58566-z.
3
Early spinal cord development: from neural tube formation to neurogenesis.
Nat Rev Neurosci. 2025 Apr;26(4):195-213. doi: 10.1038/s41583-025-00906-5. Epub 2025 Feb 6.
4
Self-organized cell patterning via mechanical feedback in hindbrain neuropore morphogenesis.
bioRxiv. 2024 Nov 21:2024.11.21.624679. doi: 10.1101/2024.11.21.624679.
5
Quantifying mechanical forces during vertebrate morphogenesis.
Nat Mater. 2024 Nov;23(11):1575-1581. doi: 10.1038/s41563-024-01942-9. Epub 2024 Jul 5.
6
A Lifeact-EGFP quail for studying actin dynamics in vivo.
J Cell Biol. 2024 Sep 2;223(9). doi: 10.1083/jcb.202404066. Epub 2024 Jun 24.
7
The Mechanics of Building Functional Organs.
Cold Spring Harb Perspect Biol. 2025 Mar 3;17(3):a041520. doi: 10.1101/cshperspect.a041520.
9
Design of neural organoids engineered by mechanical forces.
IBRO Neurosci Rep. 2024 Jan 24;16:190-195. doi: 10.1016/j.ibneur.2024.01.004. eCollection 2024 Jun.

本文引用的文献

1
Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.
Nat Cell Biol. 2016 Nov;18(11):1161-1172. doi: 10.1038/ncb3420. Epub 2016 Oct 17.
3
Laser Ablation to Probe the Epithelial Mechanics in Drosophila.
Methods Mol Biol. 2016;1478:241-251. doi: 10.1007/978-1-4939-6371-3_14.
5
Dynamic behaviors of the non-neural ectoderm during mammalian cranial neural tube closure.
Dev Biol. 2016 Aug 15;416(2):279-85. doi: 10.1016/j.ydbio.2016.06.030. Epub 2016 Jun 22.
6
Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.
Biomech Model Mechanobiol. 2016 Dec;15(6):1733-1746. doi: 10.1007/s10237-016-0794-1. Epub 2016 May 18.
7
8
Mechanotransduction During Vertebrate Neurulation.
Curr Top Dev Biol. 2016;117:359-76. doi: 10.1016/bs.ctdb.2015.11.036. Epub 2016 Jan 23.
9
Force transmission in epithelial tissues.
Dev Dyn. 2016 Mar;245(3):361-71. doi: 10.1002/dvdy.24384. Epub 2016 Jan 19.
10
Prevention of neural tube defects in the UK: a missed opportunity.
Arch Dis Child. 2016 Jul;101(7):604-7. doi: 10.1136/archdischild-2015-309226. Epub 2015 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验