Suppr超能文献

BAREB:一种用于牙周数据的贝叶斯排斥双聚类模型。

BAREB: A Bayesian repulsive biclustering model for periodontal data.

作者信息

Li Yuliang, Bandyopadhyay Dipankar, Xie Fangzheng, Xu Yanxun

机构信息

Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, USA.

Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA.

出版信息

Stat Med. 2020 Jul 20;39(16):2139-2151. doi: 10.1002/sim.8536. Epub 2020 Apr 3.

Abstract

Preventing periodontal diseases (PD) and maintaining the structure and function of teeth are important goals for personal oral care. To understand the heterogeneity in patients with diverse PD patterns, we develop a Bayesian repulsive biclustering method that can simultaneously cluster the PD patients and their tooth sites after taking the patient- and site-level covariates into consideration. BAREB uses the determinantal point process prior to induce diversity among different biclusters to facilitate parsimony and interpretability. Since PD progression is hypothesized to be spatially referenced, BAREB factors in the spatial dependence among tooth sites. In addition, since PD is the leading cause for tooth loss, the missing data mechanism is nonignorable. Such nonrandom missingness is incorporated into BAREB. For the posterior inference, we design an efficient reversible jump Markov chain Monte Carlo sampler. Simulation studies show that BAREB is able to accurately estimate the biclusters, and compares favorably to alternatives. For real world application, we apply BAREB to a dataset from a clinical PD study, and obtain desirable and interpretable results. A major contribution of this article is the Rcpp implementation of our methodology, available in the R package BAREB.

摘要

预防牙周疾病(PD)并维持牙齿的结构和功能是个人口腔护理的重要目标。为了了解具有不同PD模式的患者的异质性,我们开发了一种贝叶斯排斥双聚类方法,该方法在考虑患者和部位水平的协变量后,可以同时对PD患者及其牙齿部位进行聚类。BAREB使用行列式点过程先验来诱导不同双聚类之间的多样性,以促进简约性和可解释性。由于假设PD进展在空间上是相关的,BAREB考虑了牙齿部位之间的空间依赖性。此外,由于PD是牙齿脱落的主要原因,缺失数据机制不可忽视。这种非随机缺失被纳入BAREB。对于后验推断,我们设计了一种高效的可逆跳跃马尔可夫链蒙特卡罗采样器。模拟研究表明,BAREB能够准确估计双聚类,并且与其他方法相比具有优势。对于实际应用,我们将BAREB应用于一项临床PD研究的数据集,并获得了理想且可解释的结果。本文的一个主要贡献是我们方法的Rcpp实现,可在R包BAREB中获得。

相似文献

1
BAREB: A Bayesian repulsive biclustering model for periodontal data.
Stat Med. 2020 Jul 20;39(16):2139-2151. doi: 10.1002/sim.8536. Epub 2020 Apr 3.
2
Bayesian inference for latent biologic structure with determinantal point processes (DPP).
Biometrics. 2016 Sep;72(3):955-64. doi: 10.1111/biom.12482. Epub 2016 Feb 12.
3
Bayesian regression analysis of skewed tensor responses.
Biometrics. 2023 Sep;79(3):1814-1825. doi: 10.1111/biom.13743. Epub 2022 Sep 10.
4
Bayesian semiparametric intensity estimation for inhomogeneous spatial point processes.
Biometrics. 2011 Sep;67(3):937-46. doi: 10.1111/j.1541-0420.2010.01531.x. Epub 2010 Dec 22.
5
Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation.
Philos Trans A Math Phys Eng Sci. 2012 Dec 31;371(1984):20110541. doi: 10.1098/rsta.2011.0541. Print 2013 Feb 13.
6
Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo.
Sci Rep. 2019 Sep 24;9(1):13791. doi: 10.1038/s41598-019-50232-x.
8
Simulation-based estimators of analytically intractable causal effects.
Biometrics. 2022 Sep;78(3):1001-1017. doi: 10.1111/biom.13499. Epub 2021 Jun 6.
9
Semiparametric Bayesian latent variable regression for skewed multivariate data.
Biometrics. 2019 Jun;75(2):528-538. doi: 10.1111/biom.12989. Epub 2019 Mar 29.
10
Reversible Jump MCMC for Deghosting in MSPSR Systems.
Sensors (Basel). 2021 Jul 14;21(14):4815. doi: 10.3390/s21144815.

引用本文的文献

1
BAGEL: A BAYESIAN GRAPHICAL MODEL FOR INFERRING DRUG EFFECT LONGITUDINALLY ON DEPRESSION IN PEOPLE WITH HIV.
Ann Appl Stat. 2022 Mar;16(1):21-39. doi: 10.1214/21-AOAS1492. Epub 2022 Mar 28.

本文引用的文献

1
Effect of Smoking on Periodontitis: A Systematic Review and Meta-regression.
Am J Prev Med. 2018 Jun;54(6):831-841. doi: 10.1016/j.amepre.2018.02.014. Epub 2018 Apr 12.
2
Site-level progression of periodontal disease during a follow-up period.
PLoS One. 2017 Dec 4;12(12):e0188670. doi: 10.1371/journal.pone.0188670. eCollection 2017.
3
A marginal cure rate proportional hazards model for spatial survival data.
J R Stat Soc Ser C Appl Stat. 2015 Aug;64(4):673-691. doi: 10.1111/rssc.12098. Epub 2015 Mar 26.
4
Impact of periodontal disease on quality of life: a systematic review.
J Periodontal Res. 2017 Aug;52(4):651-665. doi: 10.1111/jre.12436. Epub 2017 Feb 8.
5
Nonparametric spatial models for clustered ordered periodontal data.
J R Stat Soc Ser C Appl Stat. 2016 Aug;65(4):619-640. doi: 10.1111/rssc.12150. Epub 2016 Apr 14.
6
Gender differences in oral health status and behavior of Greek dental students: A meta-analysis of 1981, 2000, and 2010 data.
J Int Soc Prev Community Dent. 2016 Jan-Feb;6(1):60-8. doi: 10.4103/2231-0762.175411.
7
Bayesian inference for latent biologic structure with determinantal point processes (DPP).
Biometrics. 2016 Sep;72(3):955-64. doi: 10.1111/biom.12482. Epub 2016 Feb 12.
8
Nonparametric Bayesian Bi-Clustering for Next Generation Sequencing Count Data.
Bayesian Anal. 2013 Dec;8(4):759-780. doi: 10.1214/13-ba822.
9
Analysis of periodontal data using mixed effects models.
J Periodontal Implant Sci. 2015 Feb;45(1):2-7. doi: 10.5051/jpis.2015.45.1.2. Epub 2015 Feb 25.
10
A Dirichlet process mixture model for survival outcome data: assessing nationwide kidney transplant centers.
Stat Med. 2015 Apr 15;34(8):1404-16. doi: 10.1002/sim.6438. Epub 2015 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验