Suppr超能文献

BAREB:一种用于牙周数据的贝叶斯排斥双聚类模型。

BAREB: A Bayesian repulsive biclustering model for periodontal data.

作者信息

Li Yuliang, Bandyopadhyay Dipankar, Xie Fangzheng, Xu Yanxun

机构信息

Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, USA.

Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA.

出版信息

Stat Med. 2020 Jul 20;39(16):2139-2151. doi: 10.1002/sim.8536. Epub 2020 Apr 3.

Abstract

Preventing periodontal diseases (PD) and maintaining the structure and function of teeth are important goals for personal oral care. To understand the heterogeneity in patients with diverse PD patterns, we develop a Bayesian repulsive biclustering method that can simultaneously cluster the PD patients and their tooth sites after taking the patient- and site-level covariates into consideration. BAREB uses the determinantal point process prior to induce diversity among different biclusters to facilitate parsimony and interpretability. Since PD progression is hypothesized to be spatially referenced, BAREB factors in the spatial dependence among tooth sites. In addition, since PD is the leading cause for tooth loss, the missing data mechanism is nonignorable. Such nonrandom missingness is incorporated into BAREB. For the posterior inference, we design an efficient reversible jump Markov chain Monte Carlo sampler. Simulation studies show that BAREB is able to accurately estimate the biclusters, and compares favorably to alternatives. For real world application, we apply BAREB to a dataset from a clinical PD study, and obtain desirable and interpretable results. A major contribution of this article is the Rcpp implementation of our methodology, available in the R package BAREB.

摘要

预防牙周疾病(PD)并维持牙齿的结构和功能是个人口腔护理的重要目标。为了了解具有不同PD模式的患者的异质性,我们开发了一种贝叶斯排斥双聚类方法,该方法在考虑患者和部位水平的协变量后,可以同时对PD患者及其牙齿部位进行聚类。BAREB使用行列式点过程先验来诱导不同双聚类之间的多样性,以促进简约性和可解释性。由于假设PD进展在空间上是相关的,BAREB考虑了牙齿部位之间的空间依赖性。此外,由于PD是牙齿脱落的主要原因,缺失数据机制不可忽视。这种非随机缺失被纳入BAREB。对于后验推断,我们设计了一种高效的可逆跳跃马尔可夫链蒙特卡罗采样器。模拟研究表明,BAREB能够准确估计双聚类,并且与其他方法相比具有优势。对于实际应用,我们将BAREB应用于一项临床PD研究的数据集,并获得了理想且可解释的结果。本文的一个主要贡献是我们方法的Rcpp实现,可在R包BAREB中获得。

相似文献

3
Bayesian regression analysis of skewed tensor responses.贝叶斯回归分析偏张量响应。
Biometrics. 2023 Sep;79(3):1814-1825. doi: 10.1111/biom.13743. Epub 2022 Sep 10.

本文引用的文献

2
Site-level progression of periodontal disease during a follow-up period.随访期间牙周疾病的位点水平进展情况。
PLoS One. 2017 Dec 4;12(12):e0188670. doi: 10.1371/journal.pone.0188670. eCollection 2017.
3
A marginal cure rate proportional hazards model for spatial survival data.一种用于空间生存数据的边际治愈率比例风险模型。
J R Stat Soc Ser C Appl Stat. 2015 Aug;64(4):673-691. doi: 10.1111/rssc.12098. Epub 2015 Mar 26.
4
Impact of periodontal disease on quality of life: a systematic review.牙周病对生活质量的影响:系统评价。
J Periodontal Res. 2017 Aug;52(4):651-665. doi: 10.1111/jre.12436. Epub 2017 Feb 8.
5
Nonparametric spatial models for clustered ordered periodontal data.用于聚类有序牙周数据的非参数空间模型。
J R Stat Soc Ser C Appl Stat. 2016 Aug;65(4):619-640. doi: 10.1111/rssc.12150. Epub 2016 Apr 14.
9
Analysis of periodontal data using mixed effects models.使用混合效应模型分析牙周数据。
J Periodontal Implant Sci. 2015 Feb;45(1):2-7. doi: 10.5051/jpis.2015.45.1.2. Epub 2015 Feb 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验