Suppr超能文献

一种新颖的贝叶斯连续分段线性对数风险模型,通过可逆跳跃马尔可夫链蒙特卡罗进行估计和推断。

A novel Bayesian continuous piecewise linear log-hazard model, with estimation and inference via reversible jump Markov chain Monte Carlo.

作者信息

Chapple Andrew G, Peak Taylor, Hemal Ashok

机构信息

Biostatistics Program, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, Louisiana.

Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina.

出版信息

Stat Med. 2020 May 30;39(12):1766-1780. doi: 10.1002/sim.8511. Epub 2020 Feb 22.

Abstract

We present a reversible jump Bayesian piecewise log-linear hazard model that extends the Bayesian piecewise exponential hazard to a continuous function of piecewise linear log hazards. A simulation study encompassing several different hazard shapes, accrual rates, censoring proportion, and sample sizes showed that the Bayesian piecewise linear log-hazard model estimated the true mean survival time and survival distributions better than the piecewsie exponential hazard. Survival data from Wake Forest Baptist Medical Center is analyzed by both methods and the posterior results are compared.

摘要

我们提出了一种可逆跳跃贝叶斯分段对数线性风险模型,该模型将贝叶斯分段指数风险扩展为分段线性对数风险的连续函数。一项涵盖几种不同风险形状、累积率、删失比例和样本量的模拟研究表明,贝叶斯分段线性对数风险模型比分段指数风险能更好地估计真实平均生存时间和生存分布。我们用这两种方法分析了维克森林浸礼会医学中心的生存数据,并比较了后验结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验