Suppr超能文献

未来的形态:从分子到生物体的拓扑数据分析和生物学。

The shape of things to come: Topological data analysis and biology, from molecules to organisms.

机构信息

Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, Michigan, USA.

Department of Horticulture, Michigan State University, East Lansing, Michigan, USA.

出版信息

Dev Dyn. 2020 Jul;249(7):816-833. doi: 10.1002/dvdy.175. Epub 2020 Apr 13.

Abstract

Shape is data and data is shape. Biologists are accustomed to thinking about how the shape of biomolecules, cells, tissues, and organisms arise from the effects of genetics, development, and the environment. Less often do we consider that data itself has shape and structure, or that it is possible to measure the shape of data and analyze it. Here, we review applications of topological data analysis (TDA) to biology in a way accessible to biologists and applied mathematicians alike. TDA uses principles from algebraic topology to comprehensively measure shape in data sets. Using a function that relates the similarity of data points to each other, we can monitor the evolution of topological features-connected components, loops, and voids. This evolution, a topological signature, concisely summarizes large, complex data sets. We first provide a TDA primer for biologists before exploring the use of TDA across biological sub-disciplines, spanning structural biology, molecular biology, evolution, and development. We end by comparing and contrasting different TDA approaches and the potential for their use in biology. The vision of TDA, that data are shape and shape is data, will be relevant as biology transitions into a data-driven era where the meaningful interpretation of large data sets is a limiting factor.

摘要

形状即数据,数据即形状。生物学家习惯于思考生物分子、细胞、组织和生物体的形状如何由遗传、发育和环境的影响而产生。我们很少考虑到数据本身具有形状和结构,或者有可能测量数据的形状并对其进行分析。在这里,我们以一种对生物学家和应用数学家都易于理解的方式,回顾了拓扑数据分析(TDA)在生物学中的应用。TDA 使用来自代数拓扑的原理来全面测量数据集的形状。通过使用将数据点之间的相似性与彼此相关联的函数,我们可以监测拓扑特征的演变——连通分量、环和空洞。这种演变,即拓扑特征,简洁地总结了大型、复杂的数据集。在探索 TDA 在结构生物学、分子生物学、进化和发育等生物学子领域的应用之前,我们首先为生物学家提供 TDA 入门知识。最后,我们比较和对比了不同的 TDA 方法及其在生物学中的潜在用途。TDA 的愿景是,数据即形状,形状即数据,这将是生物学进入一个数据驱动的时代的关键,在这个时代,对大型数据集的有意义的解释是一个限制因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10fc/7383827/0ef74aff7f48/DVDY-249-816-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验