Suppr超能文献

生物医学中的拓扑数据分析:综述。

Topological data analysis in biomedicine: A review.

机构信息

University of Florida, Department of Mathematics, Gainesville, FL, USA; University of Florida, Department of Medicine, Division of Pulmonary, Critical Care, & Sleep Medicine, Gainesville, FL, USA.

出版信息

J Biomed Inform. 2022 Jun;130:104082. doi: 10.1016/j.jbi.2022.104082. Epub 2022 May 1.

Abstract

Significant technological advances made in recent years have shepherded a dramatic increase in utilization of digital technologies for biomedicine- everything from the widespread use of electronic health records to improved medical imaging capabilities and the rising ubiquity of genomic sequencing contribute to a "digitization" of biomedical research and clinical care. With this shift toward computerized tools comes a dramatic increase in the amount of available data, and current tools for data analysis capable of extracting meaningful knowledge from this wealth of information have yet to catch up. This article seeks to provide an overview of emerging mathematical methods with the potential to improve the abilities of clinicians and researchers to analyze biomedical data, but may be hindered from doing so by a lack of conceptual accessibility and awareness in the life sciences research community. In particular, we focus on topological data analysis (TDA), a set of methods grounded in the mathematical field of algebraic topology that seeks to describe and harness features related to the "shape" of data. We aim to make such techniques more approachable to non-mathematicians by providing a conceptual discussion of their theoretical foundations followed by a survey of their published applications to scientific research. Finally, we discuss the limitations of these methods and suggest potential avenues for future work integrating mathematical tools into clinical care and biomedical informatics.

摘要

近年来,重大技术进步推动了数字技术在生物医学领域的广泛应用——从电子病历的广泛使用到改进的医学成像能力,再到基因组测序的普及,这些都促成了生物医学研究和临床护理的“数字化”。随着向计算机化工具的转变,可用数据的数量急剧增加,但目前还没有能够从这些大量信息中提取有意义知识的数据分析工具来跟上这一趋势。本文旨在概述一些新兴的数学方法,这些方法有可能提高临床医生和研究人员分析生物医学数据的能力,但由于生命科学研究界缺乏概念上的可及性和认识,这些方法可能会受到阻碍。特别是,我们专注于拓扑数据分析(TDA),这是一组基于代数拓扑数学领域的方法,旨在描述和利用与数据“形状”相关的特征。我们旨在通过提供对其理论基础的概念性讨论,并对其已发表的科学研究应用进行调查,使这些技术更容易为非数学家所接受。最后,我们讨论了这些方法的局限性,并提出了将数学工具整合到临床护理和生物医学信息学中的未来工作的潜在途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验