Suppr超能文献

作为一种形态测量方法的拓扑数据分析:利用持久同调划分叶片形态空间。

Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace.

作者信息

Li Mao, An Hong, Angelovici Ruthie, Bagaza Clement, Batushansky Albert, Clark Lynn, Coneva Viktoriya, Donoghue Michael J, Edwards Erika, Fajardo Diego, Fang Hui, Frank Margaret H, Gallaher Timothy, Gebken Sarah, Hill Theresa, Jansky Shelley, Kaur Baljinder, Klahs Phillip C, Klein Laura L, Kuraparthy Vasu, Londo Jason, Migicovsky Zoë, Miller Allison, Mohn Rebekah, Myles Sean, Otoni Wagner C, Pires J C, Rieffer Edmond, Schmerler Sam, Spriggs Elizabeth, Topp Christopher N, Van Deynze Allen, Zhang Kuang, Zhu Linglong, Zink Braden M, Chitwood Daniel H

机构信息

Donald Danforth Plant Science Center, St. Louis, MO, United States.

Division of Biological Sciences, University of Missouri, Columbia, MO, United States.

出版信息

Front Plant Sci. 2018 Apr 25;9:553. doi: 10.3389/fpls.2018.00553. eCollection 2018.

Abstract

Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape. We apply the method to the analysis of 182,707 leaves, both published and unpublished, representing 141 plant families collected from 75 sites throughout the world. By measuring leaves from throughout the seed plants using persistent homology, a defined morphospace comparing all leaves is demarcated. Clear differences in shape between major phylogenetic groups are detected and estimates of leaf shape diversity within plant families are made. The approach predicts plant family above chance. The application of a persistent homology method, using topological features, to measure leaf shape allows for a unified morphometric framework to measure plant form, including shapes, textures, patterns, and branching architectures.

摘要

当前全面测量形状的形态测量方法无法比较种子植物中发现的不同叶片形状,并且对处理伪影敏感。我们探索使用持久同调,这是一种拓扑方法,应用于跨单纯复形的过滤(或者更简单地说,是一种在不同空间分辨率下测量空间拓扑特征的方法),以克服这些限制。所描述的方法分离形状特征的子集,并测量形状中相邻像素密度的空间关系。我们将该方法应用于对182,707片叶片的分析,这些叶片既有已发表的也有未发表的,代表了从全球75个地点收集的141个植物科。通过使用持久同调测量整个种子植物的叶片,划定了一个比较所有叶片的定义形态空间。检测到主要系统发育类群之间明显的形状差异,并对植物科内的叶片形状多样性进行了估计。该方法预测植物科的准确率高于随机水平。使用拓扑特征的持久同调方法在测量叶片形状方面的应用,允许使用统一的形态测量框架来测量植物形态,包括形状、纹理、图案和分支结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验