Auditory Neurophysiology Laboratory, Department of Neuroscience, Psychology & Behaviour, College of Life Sciences, University of Leicester, Leicester, LE1 7RH, UK.
Neurotoxicity at the Synaptic Interface, MRC Toxicology Unit, University of Leicester, UK.
J Physiol. 2020 Jun;598(11):2199-2222. doi: 10.1113/JP279668. Epub 2020 May 16.
Kv3.1 and Kv3.3 subunits are highly expressed in the auditory brainstem, with little or no mRNA for Kv3.2 or Kv3.4. Changes in Kv3 currents and action potential (AP) firing were analysed from wild-type, Kv3.1 and Kv3.3 knockout (KO) mice. Both Kv3.1 and Kv3.3 immunostaining was present and western blots confirmed loss of subunit protein in the respective KO. Medial nucleus of the trapezoid body (MNTB) AP repolarization utilized Kv3.1 and/or Kv3.3; while in the lateral superior olive (LSO) Kv3.3 was essential. Voltage-gated calcium currents were unchanged between the genotypes. But APs evoked higher [Ca ] in LSO than MNTB neurons; and were highest in the Kv3.3KO, consistent with longer AP durations. High frequency stimulation increased AP failure rates and AP latency in LSO neurons from the Kv3.3KO, underlining the physiological consequences for binaural integration. LSO neurons require Kv3.3 for functional Kv3 channels, while MNTB neurons can utilize either Kv3.1 or Kv3.3 subunits.
Kv3 voltage-gated potassium channels mediate action potential (AP) repolarization. The relative importance of Kv3.1 and Kv3.3 subunits for assembly of functional channels in neurons of the auditory brainstem was examined from the physiological perspective that speed and precision of AP firing are crucial for sound source localization. High levels of Kv3.1 and Kv3.3 mRNA and protein were measured, with no evidence of compensation by Kv3.2 or Kv3.4 in the respective knockout (KO) mouse. Using the KOs, composition of Kv3 channels was constrained to either Kv3.1 or Kv3.3 subunits in principal neurons of the medial nucleus of the trapezoid body (MNTB) and lateral superior olive (LSO); while TEA (1 mm) was employed to block Kv3-mediated outward potassium currents in voltage- and current clamp experiments. MNTB neuron APs (half-width 0.31 ± 0.08 ms, n = 25) were fast, reliable, and showed no distinction between channels assembled from Kv3.1 or Kv3.3 subunits (in the respective KO). LSO AP half-widths were also fast, but absolutely required Kv3.3 subunits for fast repolarization (half-widths: 0.25 ± 0.08 ms, n = 19 wild-type, 0.60 ± 0.17 ms, n = 21 Kv3.3KO, p = 0.0001). The longer AP duration increased LSO calcium influx and AP failure rates, and increased AP latency and jitter during high frequency repetitive firing. Both Kv3.1 and Kv3.3 subunits contribute to Kv3 channels in the MNTB (and compensate for each other in each KO); in contrast, LSO neurons require Kv3.3 subunits for fast repolarization and to sustain AP firing during high frequency stimulation. In conclusion, Kv3 channels exhibit both redundancy and Kv3.3 dominance between the brainstem nuclei involved in sound localization.
Kv3.1 和 Kv3.3 亚基在听觉脑干中高度表达,而 Kv3.2 或 Kv3.4 的 mRNA 则很少或没有。从野生型、Kv3.1 和 Kv3.3 敲除 (KO) 小鼠中分析了 Kv3 电流和动作电位 (AP) 发放的变化。Kv3.1 和 Kv3.3 免疫染色均存在,Western blot 证实了各自 KO 中亚基蛋白的缺失。中梯形核 (MNTB) 的 AP 复极化利用 Kv3.1 和/或 Kv3.3;而在外侧上橄榄核 (LSO),Kv3.3 是必需的。基因型之间的电压门控钙电流没有变化。但在 LSO 神经元中,AP 诱发的 [Ca] 更高;而在 Kv3.3KO 中最高,与更长的 AP 持续时间一致。高频刺激增加了 LSO 神经元的 AP 失效率和 AP 潜伏期,这突显了对双耳整合的生理后果。LSO 神经元需要 Kv3.3 来发挥功能性 Kv3 通道的作用,而 MNTB 神经元可以利用 Kv3.1 或 Kv3.3 亚基。
Kv3 电压门控钾通道介导动作电位 (AP) 复极化。从生理角度研究了 Kv3.1 和 Kv3.3 亚基在听觉脑干神经元中组装功能性通道的相对重要性,因为 AP 发放的速度和精度对于声源定位至关重要。测量了高水平的 Kv3.1 和 Kv3.3 mRNA 和蛋白,在各自的敲除 (KO) 小鼠中没有证据表明 Kv3.2 或 Kv3.4 有补偿作用。使用 KO,在中梯形核 (MNTB) 和外侧上橄榄核 (LSO) 的主要神经元中,将 Kv3 通道的组成限制为 Kv3.1 或 Kv3.3 亚基;而 TEA(1 mM)用于在电压和电流钳实验中阻断 Kv3 介导的外向钾电流。MNTB 神经元的 AP(半宽度 0.31±0.08 ms,n=25)速度快、可靠,且由 Kv3.1 或 Kv3.3 亚基组装的通道之间没有区别(在各自的 KO 中)。LSO AP 的半宽度也很快,但快速复极化绝对需要 Kv3.3 亚基(半宽度:0.25±0.08 ms,n=19 野生型,0.60±0.17 ms,n=21 Kv3.3KO,p=0.0001)。较长的 AP 持续时间增加了 LSO 的钙内流和 AP 失效率,并增加了高频重复放电时的 AP 潜伏期和抖动。Kv3.1 和 Kv3.3 亚基都有助于 MNTB 中的 Kv3 通道(并在每个 KO 中相互补偿);相比之下,LSO 神经元需要 Kv3.3 亚基来快速复极化,并在高频刺激期间维持 AP 发放。总之,Kv3 通道在参与声源定位的脑干核之间表现出冗余性和 Kv3.3 主导性。