Covarrubias Manuel, Liang Qiansheng, Nguyen-Phuong Linh, Kennedy Kyle J, Alexander Tyler D, Sam Andrew
Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA.
Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA.
Neuropharmacology. 2025 Sep 1;275:110483. doi: 10.1016/j.neuropharm.2025.110483. Epub 2025 Apr 25.
The third subfamily of voltage-gated K (Kv) channels includes four members, Kv3.1, Kv3.2, Kv3.3 and Kv3.4. Fast gating and activation at relatively depolarized membrane potentials allows Kv3 channels to be major drivers of fast action potential repolarization in the nervous system. Consequently, they help determine the fast-spiking phenotype of inhibitory interneurons and regulate fast synaptic transmission at glutamatergic synapses and the neuromuscular junction. Recent studies from our group and a team of collaborators have used cryo-EM to demonstrate the surprising gating role of the Kv3.1 cytoplasmic T1 domain, the structural basis of a developmental epileptic encephalopathy caused by the Kv3.2-C125Y variant and the mechanism of action of positive allosteric modulators involving unexpected interactions and conformational changes in Kv3.1 and Kv3.2. Furthermore, our recent work has shown that Kv3.4 regulates use-dependent spike broadening in a manner that depends on gating modulation by phosphorylation of the channel's N-terminal inactivation domain, which can impact activity-dependent synaptic facilitation. Here, we review and integrate these studies to provide a perspective on our current understanding of Kv3 channel function, dysfunction and pain modulation in the nervous system.
电压门控钾(Kv)通道的第三个亚家族包括四个成员,即Kv3.1、Kv3.2、Kv3.3和Kv3.4。在相对去极化的膜电位下快速门控和激活,使得Kv3通道成为神经系统中快速动作电位复极化的主要驱动因素。因此,它们有助于确定抑制性中间神经元的快速放电表型,并调节谷氨酸能突触和神经肌肉接头处的快速突触传递。我们团队和一组合作者最近的研究利用冷冻电镜证明了Kv3.1细胞质T1结构域令人惊讶的门控作用、由Kv3.2 - C125Y变体引起的发育性癫痫性脑病的结构基础以及正变构调节剂的作用机制,该机制涉及Kv3.1和Kv3.2中意外的相互作用和构象变化。此外,我们最近的工作表明,Kv3.4以一种依赖于通道N端失活结构域磷酸化的门控调节方式来调节使用依赖性的峰电位展宽,这可能会影响活动依赖性突触易化。在这里,我们回顾并整合这些研究,以提供一个关于我们目前对Kv3通道在神经系统中的功能、功能障碍和疼痛调节的理解的观点。