Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103, Leipzig, Germany.
Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Tel Aviv-Yafo, Israel.
Bull Math Biol. 2020 Apr 4;82(4):50. doi: 10.1007/s11538-020-00729-8.
Models of adaptive bet-hedging commonly adopt insights from Kelly's famous work on optimal gambling strategies and the financial value of information. In particular, such models seek evolutionary solutions that maximize long-term average growth rate of lineages, even in the face of highly stochastic growth trajectories. Here, we argue for extensive departures from the standard approach to better account for evolutionary contingencies. Crucially, we incorporate considerations of volatility minimization, motivated by interim extinction risk in finite populations, within a finite time horizon approach to growth maximization. We find that a game-theoretic competitive optimality approach best captures these additional constraints and derive the equilibria solutions under straightforward fitness payoff functions and extinction risks. We show that for both maximal growth and minimal time relative payoffs, the log-optimal strategy is a unique pure strategy symmetric equilibrium, invariant with evolutionary time horizon and robust to low extinction risks.
自适应套期保值模型通常采用凯利(Kelly)关于最佳赌博策略和信息金融价值的著名工作的见解。特别是,此类模型寻求即使在面对高度随机增长轨迹的情况下,也能使谱系的长期平均增长率最大化的进化解决方案。在这里,我们主张广泛偏离标准方法,以更好地考虑进化的偶然性。至关重要的是,我们在有限时间范围内的增长最大化方法中纳入了最小化波动的考虑因素,这是由有限种群中的中期灭绝风险驱动的。我们发现,博弈论竞争最优方法最能捕获这些附加约束,并在简单的适应值收益函数和灭绝风险下得出均衡解。我们表明,对于最大增长和最小时间相对收益,对数最优策略是一个独特的纯策略对称均衡,与进化时间范围无关,并且对低灭绝风险具有鲁棒性。