Department of Food Science and Technology, Jungwon University, 85, Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-805, Republic of Korea.
Biotechnol Lett. 2020 Jul;42(7):1193-1202. doi: 10.1007/s10529-020-02884-3. Epub 2020 Apr 4.
The aim of this study was to identify genes related to a heavy metal tolerance and to elucidate the tolerance mechanism in a eukaryote model using Saccharomyces cerevisiae.
In this study, one strain tolerant to up to 50 μM Pb(NO) and 30 μM CdCl was isolated by screening a transposon-mediated mutant library and the disrupted gene was determined to be RIM15. In addition, this gene's characteristics related to heavy metals-tolerance was proved by deletion and overexpressing of this corresponding gene. The transposon mutant grew faster than the control strain and showed an obvious reduction in the intracellular level of reactive oxygen species (ROS) with activation of MSN4 and CTT1 in YPD medium containing 50 μM Pb(NO) and 30 μM CdCl respectively.
Disruption of RIM15 in S. cerevisiae results in increased tolerance to heavy metal stress.
本研究旨在利用酿酒酵母作为真核生物模型,鉴定与重金属耐受相关的基因,并阐明其耐受机制。
本研究通过筛选转座子介导的突变文库,分离出一株耐受高达 50μM Pb(NO3)2 和 30μM CdCl2 的菌株,确定该缺失的基因为 RIM15。此外,通过该相应基因的缺失和过表达,证明了该基因在重金属耐受方面的特性。转座子突变体在 YPD 培养基中生长速度快于对照菌株,并且在含有 50μM Pb(NO3)2 和 30μM CdCl2 的培养基中,其细胞内活性氧(ROS)水平明显降低,同时 MSN4 和 CTT1 被激活。
酿酒酵母中 RIM15 的缺失导致对重金属胁迫的耐受性增加。