Suppr超能文献

气孔优化模型的理论与实证评估

A theoretical and empirical assessment of stomatal optimization modeling.

作者信息

Wang Yujie, Sperry John S, Anderegg William R L, Venturas Martin D, Trugman Anna T

机构信息

School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.

Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.

出版信息

New Phytol. 2020 Jul;227(2):311-325. doi: 10.1111/nph.16572. Epub 2020 May 8.

Abstract

Optimal stomatal control models have shown great potential in predicting stomatal behavior and improving carbon cycle modeling. Basic stomatal optimality theory posits that stomatal regulation maximizes the carbon gain relative to a penalty of stomatal opening. All models take a similar approach to calculate instantaneous carbon gain from stomatal opening (the gain function). Where the models diverge is in how they calculate the corresponding penalty (the penalty function). In this review, we compare and evaluate 10 different optimization models in how they quantify the penalty and how well they predict stomatal responses to the environment. We evaluate models in two ways. First, we compare their penalty functions against seven criteria that ensure a unique and qualitatively realistic solution. Second, we quantitatively test model against multiple leaf gas-exchange datasets. The optimization models with better predictive skills have penalty functions that meet our seven criteria and use fitting parameters that are both few in number and physiology based. The most skilled models are those with a penalty function based on stress-induced hydraulic failure. We conclude by proposing a new model that has a hydraulics-based penalty function that meets all seven criteria and demonstrates a highly predictive skill against our test datasets.

摘要

最优气孔控制模型在预测气孔行为和改进碳循环建模方面显示出巨大潜力。基本气孔最优性理论假定,气孔调节使相对于气孔开放代价的碳增益最大化。所有模型都采用类似方法从气孔开放计算瞬时碳增益(增益函数)。模型的不同之处在于它们如何计算相应的代价(代价函数)。在本综述中,我们比较和评估了10种不同的优化模型在量化代价方面的方式以及它们对气孔对环境响应的预测能力。我们通过两种方式评估模型。首先,我们将它们的代价函数与确保唯一且定性现实解的七个标准进行比较。其次,我们针对多个叶片气体交换数据集对模型进行定量测试。具有更好预测能力的优化模型具有符合我们七个标准的代价函数,并且使用数量少且基于生理学的拟合参数。最具预测能力的模型是那些具有基于胁迫诱导水力失效的代价函数的模型。我们通过提出一种新模型来结束本文,该模型具有基于水力学的代价函数,符合所有七个标准,并且在针对我们的测试数据集时表现出高度的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验