Suppr超能文献

土壤水分胁迫对光合作用驯化性气孔限制的影响:来自稳定碳同位素数据的见解。

Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: Insights from stable carbon isotope data.

机构信息

Carbon Cycle Research Group, Space and Atmospheric Physics, Department of Physics, Imperial College London, London, UK.

Department of Life Sciences, Imperial College London, Ascot, UK.

出版信息

Glob Chang Biol. 2020 Dec;26(12):7158-7172. doi: 10.1111/gcb.15364. Epub 2020 Oct 19.

Abstract

Atmospheric aridity and drought both influence physiological function in plant leaves, but their relative contributions to changes in the ratio of leaf internal to ambient partial pressure of CO (χ) - an index of adjustments in both stomatal conductance and photosynthetic rate to environmental conditions - are difficult to disentangle. Many stomatal models predicting χ include the influence of only one of these drivers. In particular, the least-cost optimality hypothesis considers the effect of atmospheric demand for water on χ but does not predict how soils with reduced water further influence χ, potentially leading to an overestimation of χ under dry conditions. Here, we use a large network of stable carbon isotope measurements in C woody plants to examine the acclimated response of χ to soil water stress. We estimate the ratio of cost factors for carboxylation and transpiration (β) expected from the theory to explain the variance in the data, and investigate the responses of β (and thus χ) to soil water content and suction across seed plant groups, leaf phenological types and regions. Overall, β decreases linearly with soil drying, implying that the cost of water transport along the soil-plant-atmosphere continuum increases as water available in the soil decreases. However, despite contrasting hydraulic strategies, the stomatal responses of angiosperms and gymnosperms to soil water tend to converge, consistent with the optimality theory. The prediction of β as a simple, empirical function of soil water significantly improves χ predictions by up to 6.3 ± 2.3% (mean ± SD of adjusted-R ) over 1980-2018 and results in a reduction of around 2% of mean χ values across the globe. Our results highlight the importance of soil water status on stomatal functions and plant water-use efficiency, and suggest the implementation of trait-based hydraulic functions into the model to account for soil water stress.

摘要

大气干旱和干旱都会影响植物叶片的生理功能,但它们对叶片内部与环境 CO2 分压比(χ)变化的相对贡献——这是对气孔导度和光合速率对环境条件的调整的一个指标——很难区分。许多预测 χ 的气孔模型只考虑了这两个驱动因素之一的影响。特别是,最小成本最优性假说考虑了大气对水的需求对 χ 的影响,但没有预测土壤水分减少如何进一步影响 χ,这可能导致在干旱条件下对 χ 的高估。在这里,我们使用大量稳定碳同位素测量的网络来研究 χ 对土壤水分胁迫的适应响应。我们根据理论来估计解释数据方差的羧化和蒸腾的成本因素比(β),并调查 β(因此 χ)对不同种子植物群、叶片物候类型和区域的土壤含水量和吸力的响应。总的来说,β 随土壤干燥呈线性下降,这意味着随着土壤中可用水分的减少,水在土壤-植物-大气连续体中的运输成本增加。然而,尽管具有不同的水力策略,被子植物和裸子植物对土壤水分的气孔响应趋于收敛,这与最优性理论一致。将 β 作为土壤水分的简单、经验函数进行预测,可以将 1980 年至 2018 年期间 χ 的预测值提高高达 6.3%±2.3%(调整后的-R 的平均值±标准差),并使全球平均 χ 值降低约 2%。我们的研究结果强调了土壤水分状况对气孔功能和植物水分利用效率的重要性,并表明实施基于性状的水力函数到模型中,以考虑土壤水分胁迫。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验