Ren Xiao-Chuan, Zhang Xue-Qiang, Xu Rui, Huang Jia-Qi, Zhang Qiang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
Adv Mater. 2020 Jun;32(24):e1908293. doi: 10.1002/adma.201908293. Epub 2020 Apr 6.
Safe and high-energy-density rechargeable batteries are increasingly indispensable in the pursuit of a wireless and fossil-free society. Advancements in present battery technologies and the investigation of next-generation batteries highly depend on the ever-deepening fundamental understanding and the rational designs of working electrodes, electrolytes, and interfaces. However, accurately analyzing energy materials and interfaces is severely hindered by their intrinsic limitations of air and electron-beam sensitivity, which restrains the research of energy materials in a low-efficiency trial-and-error paradigm. The emergence of cryogenic electron microscopy (cryo-EM) has enabled the nondestructive characterization of air- and electron-beam sensitive energy materials in the microscale and nanoscale, and even at atomic resolutions, affording closer insights into the primary chemistry and physics of working batteries. Herein, the development of cryo-EM and the applications in detecting energy materials are reviewed and analyzed from its overwhelming advantages in disclosing the underlying mystery of energy materials. Critical sample preparation methods as the precondition for cryo-EM are compared, which strongly affect the characterization accuracy. Furthermore, new developments in the analysis of energy materials, especially bulk electrodes and interfaces in lithium metal batteries, are presented according to different functions of cryo-EM. Finally, future directions of cryo-EM for analyzing energy materials are prospected.
在追求无线和无化石燃料社会的过程中,安全且能量密度高的可充电电池变得越来越不可或缺。当前电池技术的进步以及对下一代电池的研究高度依赖于对工作电极、电解质和界面的不断深入的基本理解以及合理设计。然而,对能量材料和界面进行精确分析受到其对空气和电子束敏感的固有局限性的严重阻碍,这使得能量材料的研究局限于低效的试错模式。低温电子显微镜(cryo-EM)的出现使得能够在微观和纳米尺度甚至原子分辨率下对空气和电子束敏感的能量材料进行无损表征,从而更深入地了解工作电池的基本化学和物理过程。在此,从低温电子显微镜在揭示能量材料潜在奥秘方面的压倒性优势出发,对其发展以及在检测能量材料中的应用进行综述和分析。比较了作为低温电子显微镜前提条件的关键样品制备方法,这些方法对表征准确性有很大影响。此外,根据低温电子显微镜的不同功能,介绍了能量材料分析方面的新进展,特别是锂金属电池中的块状电极和界面。最后,展望了低温电子显微镜在分析能量材料方面的未来发展方向。