Suppr超能文献

用于能源材料的低温电子显微镜。

Cryogenic Electron Microscopy for Energy Materials.

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.

Biophysics Program, School of Medicine, Stanford University, Stanford, California 94305, United States.

出版信息

Acc Chem Res. 2021 Sep 21;54(18):3505-3517. doi: 10.1021/acs.accounts.1c00183. Epub 2021 Jul 19.

Abstract

The development of clean energy generation, transmission, and distribution technology, for example, high energy density batteries and high efficiency solar cells, is critical to the progress toward a sustainable future. Such advancement in both scientific understanding and technological innovations entail an atomic- and molecular-resolution understanding of the key materials and fundamental processes governing the operation and failure of the systems. These dynamic processes span multiple length and time scales bridging materials and interfaces involved across the entire device architecture. However, these key components are often highly sensitive to air, moisture, and electron-beam radiation and therefore remain resistant to conventional nanoscale interrogation by electron-optical methods, such as high-resolution (scanning) transmission electron microscopy and spectroscopy.Fortunately, the rapid progress in cryogenic electron microscopy (cryo-EM) for physical sciences starts to offer researchers new tools and methods to probe these otherwise inaccessible length scales of components and phenomena in energy science. Specifically, weakly bonded and reactive materials, interfaces and phases that typically degrade under high energy electron-beam irradiation and environmental exposure can potentially be protected and stabilized by cryogenic methods, bringing up thrilling opportunities to address many crucial yet unanswered questions in energy science, which can eventually lead to new scientific discoveries and technological breakthroughs.Thus, in this Account, we aim to highlight the significance of cryo-EM to energy related research and the impactful results that can be potentially spawned from there. Due to the limited space, we will mainly review representative examples of cryo-EM methodology for lithium (Li)-based batteries, hybrid perovskite solar cells, and metal-organic-frameworks, which have shown great promise in revealing atomic resolution of both structural and chemical information on the sensitive yet critical components in these systems. We will first emphasize the application of cryo-EM to resolve the nanostructure and chemistry of solid-electrolyte interphases, cathode-electrolyte interphase, and electrode materials in batteries to reflect how cryo-EM could inspire rational materials design and guide battery research toward practical applications. We then discuss how cryo-EM helped to reveal guest intercalation chemistry in weakly bonded metal-organic-frameworks to develop a complete picture of host-guest interaction. Next, we summarize efforts in hybrid perovskite materials for solar cells where cryo-EM preserved the volatile organic molecules and protected perovskites from any air or moisture contamination. Finally, we conclude with perspectives and brief discussion on future directions for cryo-EM in energy and materials science.

摘要

清洁能源的产生、传输和分配技术的发展,例如高能量密度电池和高效太阳能电池,对于实现可持续未来至关重要。这种在科学理解和技术创新方面的进步需要原子和分子分辨率的理解,以了解关键材料和基本过程,这些过程决定了系统的运行和失效。这些动态过程跨越了多个长度和时间尺度,涵盖了整个设备结构中涉及的材料和界面。然而,这些关键组件通常对空气、水分和电子束辐射非常敏感,因此仍然难以通过电子光学方法(如高分辨率(扫描)透射电子显微镜和光谱学)进行常规的纳米级检测。幸运的是,低温电子显微镜(cryo-EM)在物理科学领域的快速发展开始为研究人员提供新的工具和方法,以探测这些在能量科学中原本无法到达的组件和现象的长度尺度。具体来说,低温方法可以保护和稳定通常在高能电子束辐照和环境暴露下降解的弱键合和反应性材料、界面和相,从而带来解决能量科学中许多关键但尚未解决的问题的激动人心的机会,这些问题最终可能导致新的科学发现和技术突破。

因此,在本报告中,我们旨在强调 cryo-EM 对与能源相关的研究的重要性,以及由此可能产生的有影响力的结果。由于篇幅限制,我们将主要回顾 cryo-EM 方法在锂离子(Li)电池、杂化钙钛矿太阳能电池和金属有机骨架方面的代表性例子,这些例子在揭示这些系统中敏感但关键组件的结构和化学信息方面显示出了巨大的潜力。我们将首先强调 cryo-EM 在解决电池中固体电解质界面、阴极-电解质界面和电极材料的纳米结构和化学方面的应用,以反映 cryo-EM 如何激发合理的材料设计并指导电池研究走向实际应用。然后,我们讨论 cryo-EM 如何帮助揭示弱键合的金属有机骨架中客体插层化学,以建立主体-客体相互作用的完整图景。接下来,我们总结了在太阳能电池中杂化钙钛矿材料方面的努力,其中 cryo-EM 保留了挥发性有机分子并防止钙钛矿受到任何空气或水分的污染。最后,我们对 cryo-EM 在能源和材料科学中的未来方向进行了展望和简要讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验