Suppr超能文献

通过配体和缺陷化学调控ZrO金属有机框架节点上的催化位点,并以正丁醇脱水制异丁烯进行探究。

Tuning Catalytic Sites on ZrO Metal-Organic Framework Nodes via Ligand and Defect Chemistry Probed with -Butyl Alcohol Dehydration to Isobutylene.

作者信息

Yang Dong, Gaggioli Carlo Alberto, Ray Debmalya, Babucci Melike, Gagliardi Laura, Gates Bruce C

机构信息

Department of Chemical Engineering, University of California, Davis, California 95616, United States.

Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States.

出版信息

J Am Chem Soc. 2020 Apr 29;142(17):8044-8056. doi: 10.1021/jacs.0c03175. Epub 2020 Apr 15.

Abstract

Metal-organic frameworks (MOFs) have drawn wide attention as candidate catalysts, but some essential questions about their nature and performance have barely been addressed. (1) How do OH groups on MOF nodes act as catalytic sites? (2) What are the relationships among these groups, node defects, and MOF stability, and how do reaction conditions influence them? (3) What are the interplays between catalytic properties and transport limitations? To address these questions, we report an experimental and theoretical investigation of the catalytic dehydration of -butyl alcohol (TBA) used to probe the activities of OH groups of ZrO nodes in the MOFs UiO-66 and MOF-808, which have different densities of vacancy sites and different pore sizes. The results show that (1) terminal node OH groups are formed as formate and/or acetate ligands present initially on the nodes react with TBA to form esters, (2) these OH groups act as catalytic sites for TBA dehydration to isobutylene, and (3) TBA also reacts to break node-linker bonds to form esters and thereby unzip the MOFs. The small pores of UiO-66 limit the access of TBA and the reaction with the formate/acetate ligands bound within the pores, whereas the larger pores of MOF-808 facilitate transport and favor reaction in the MOF interior. However, after removal of the formate and acetate ligands by reaction with methanol to form esters, interior active sites in UiO-66 become accessible for the reaction of TBA, with the activity depending on the density of defect sites with terminal OH groups. The number of vacancies on the nodes is important in determining a tradeoff between the catalytic activity of a MOF and its resistance to unzipping. Computations at the level of density functional theory show how the terminal OH groups on node vacancies act as Brønsted bases, facilitating TBA dehydration via a carbocation intermediate in an E1 mechanism; the calculations further illuminate the comparable chemistry of the unzipping.

摘要

金属有机框架材料(MOFs)作为候选催化剂已引起广泛关注,但关于其本质和性能的一些基本问题几乎尚未得到解决。(1)MOF节点上的羟基如何作为催化位点?(2)这些基团、节点缺陷和MOF稳定性之间有什么关系,反应条件如何影响它们?(3)催化性能与传输限制之间有什么相互作用?为了解决这些问题,我们报告了一项实验和理论研究,该研究利用叔丁醇(TBA)的催化脱水来探测MOFs UiO - 66和MOF - 808中ZrO节点羟基的活性,这两种材料具有不同的空位密度和孔径。结果表明:(1)末端节点羟基是由于最初存在于节点上的甲酸酯和/或乙酸酯配体与TBA反应形成酯而形成的;(2)这些羟基作为TBA脱水生成异丁烯的催化位点;(3)TBA还会反应破坏节点 - 连接体键以形成酯,从而使MOFs解链。UiO - 66的小孔限制了TBA的进入以及与孔内结合的甲酸酯/乙酸酯配体的反应,而MOF - 808较大的孔有利于传输并促进MOF内部的反应。然而,通过与甲醇反应形成酯去除甲酸酯和乙酸酯配体后,UiO - 66内部的活性位点可用于TBA反应,其活性取决于具有末端羟基的缺陷位点的密度。节点上空位的数量对于确定MOF的催化活性与其抗解链能力之间的权衡很重要。密度泛函理论水平的计算表明,节点空位上的末端羟基如何作为布朗斯特碱,通过E1机制中的碳正离子中间体促进TBA脱水;计算进一步阐明了解链的类似化学过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验