State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
Nat Commun. 2023 Apr 13;14(1):2116. doi: 10.1038/s41467-023-37693-5.
Chemical warfare agents (CWAs) significantly threaten human peace and global security. Most personal protective equipment (PPE) deployed to prevent exposure to CWAs is generally devoid of self-detoxifying activity. Here we report the spatial rearrangement of metal-organic frameworks (MOFs) into superelastic lamellar-structured aerogels based on a ceramic network-assisted interfacial engineering protocol. The optimized aerogels exhibit efficient adsorption and decomposition performance against CWAs either in liquid or aerosol forms (half-life of 5.29 min, dynamic breakthrough extent of 400 L g) due to the preserved MOF structure, van-der-Waals barrier channels, minimized diffusion resistance (~41% reduction), and stability over a thousand compressions. The successful construction of the attractive materials offers fascinating perspectives on the development of field-deployable, real-time detoxifying, and structurally adaptable PPE that could be served as outdoor emergency life-saving devices against CWAs threats. This work also provides a guiding toolbox for incorporating other critical adsorbents into the accessible 3D matrix with enhanced gas transport properties.
化学战剂(CWAs)严重威胁着人类和平与全球安全。大多数用于防止接触 CWAs 的个人防护设备(PPE)通常缺乏自我解毒活性。在这里,我们报告了基于陶瓷网络辅助界面工程方案,将金属有机骨架(MOFs)重新排列成具有超弹性层状结构的气凝胶。由于保留了 MOF 结构、范德华势垒通道、最小化扩散阻力(~41%降低)以及在一千次压缩后的稳定性,优化后的气凝胶在液体或气溶胶形式下对 CWAs 具有高效的吸附和分解性能(半衰期为 5.29 分钟,动态穿透程度为 400 升/克)。这种有吸引力的材料的成功构建为开发可现场部署、实时解毒和结构适应性强的 PPE 提供了迷人的视角,可作为针对 CWAs 威胁的户外紧急救生设备。这项工作还为将其他关键吸附剂纳入具有增强气体传输性能的可及 3D 基质提供了一个指导工具包。