Suppr超能文献

深度功能分析有助于评估抗生素阿贝卡星的抗菌潜力。

Deep Functional Profiling Facilitates the Evaluation of the Antibacterial Potential of the Antibiotic Amicoumacin.

作者信息

Terekhov Stanislav S, Nazarov Anton S, Mokrushina Yuliana A, Baranova Margarita N, Potapova Nadezhda A, Malakhova Maja V, Ilina Elena N, Smirnov Ivan V, Gabibov Alexander G

机构信息

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.

Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.

出版信息

Antibiotics (Basel). 2020 Apr 2;9(4):157. doi: 10.3390/antibiotics9040157.

Abstract

The global spread of antibiotic resistance is forcing the scientific community to find new molecular strategies to counteract it. Deep functional profiling of microbiomes provides an alternative source for the discovery of novel antibiotic producers and probiotics. Recently, we implemented this ultrahigh-throughput screening approach for the isolation of strains efficiently producing the ribosome-targeting antibiotic amicoumacin A (Ami). Proteomics and metabolomics revealed essential insight into the activation of Ami biosynthesis. Here, we applied omics to boost Ami biosynthesis, providing the optimized cultivation conditions for high-scale production of Ami. Ami displayed a pronounced activity against and , including methicillin-resistant (MRSA) strains, which was determined using both classical and massive single-cell microfluidic assays. However, the practical application of Ami is limited by its high cytotoxicity and particularly low stability. The former is associated with its self-lactonization, serving as an improvised intermediate state of Ami hydrolysis. This intramolecular reaction decreases Ami half-life at physiological conditions to less than 2 h, which is unprecedented for a terminal amide. While we speculate that the instability of Ami is essential for ecology, we believe that its stable analogs represent attractive lead compounds both for antibiotic discovery and for anticancer drug development.

摘要

抗生素耐药性的全球传播正迫使科学界寻找新的分子策略来应对这一问题。微生物群落的深度功能分析为发现新型抗生素产生菌和益生菌提供了一个替代来源。最近,我们采用了这种超高通量筛选方法来分离能够高效产生靶向核糖体的抗生素阿密菌素A(Ami)的菌株。蛋白质组学和代谢组学揭示了对Ami生物合成激活的重要见解。在此,我们应用组学技术来促进Ami的生物合成,为Ami的大规模生产提供优化的培养条件。Ami对金黄色葡萄球菌和表皮葡萄球菌表现出显著活性,包括耐甲氧西林金黄色葡萄球菌(MRSA)菌株,这是通过经典和大规模单细胞微流控测定法确定的。然而,Ami的实际应用受到其高细胞毒性尤其是低稳定性的限制。前者与其自身内酯化有关,这是Ami水解的一种临时中间状态。这种分子内反应使Ami在生理条件下的半衰期缩短至不到2小时,这对于末端酰胺来说是前所未有的。虽然我们推测Ami的不稳定性对其生态至关重要,但我们认为其稳定类似物对于抗生素发现和抗癌药物开发都是有吸引力的先导化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ef5/7235827/d9245a4b2001/antibiotics-09-00157-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验