Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
Nat Rev Microbiol. 2020 Apr;18(4):241-256. doi: 10.1038/s41579-020-0323-1. Epub 2020 Feb 13.
The function of cells in their native habitat often cannot be reliably predicted from genomic data or from physiology studies of isolates. Traditional experimental approaches to study the function of taxonomically and metabolically diverse microbiomes are limited by their destructive nature, low spatial resolution or low throughput. Recently developed technologies can offer new insights into cellular function in natural and human-made systems and how microorganisms interact with and shape the environments that they inhabit. In this Review, we provide an overview of these next-generation physiology approaches and discuss how the non-destructive analysis of cellular phenotypes, in combination with the separation of the target cells for downstream analyses, provide powerful new, complementary ways to study microbiome function. We anticipate that the widespread application of next-generation physiology approaches will transform the field of microbial ecology and dramatically improve our understanding of how microorganisms function in their native environment.
细胞在其天然栖息地的功能往往不能仅通过基因组数据或分离物的生理学研究来可靠地预测。传统的实验方法在研究分类和代谢多样化的微生物组的功能时受到破坏性、低空间分辨率或低通量的限制。最近开发的技术可以为研究自然和人为系统中的细胞功能以及微生物如何相互作用和塑造其栖息环境提供新的见解。在这篇综述中,我们概述了这些下一代生理学方法,并讨论了如何将细胞表型的非破坏性分析与目标细胞的分离相结合,为研究微生物组功能提供强大的新的互补方法。我们预计,下一代生理学方法的广泛应用将改变微生物生态学领域,并极大地提高我们对微生物在其天然环境中如何发挥功能的理解。