Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
Cells. 2020 Apr 2;9(4):869. doi: 10.3390/cells9040869.
Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle wasting disorder arising from mutations in the ~2.4 Mb dystrophin-encoding gene. RNA-guided CRISPR-Cas9 nucleases (RGNs) are opening new DMD therapeutic routes whose bottlenecks include delivering sizable RGN complexes for assessing their effects on human genomes and testing ex vivo and in vivo -correcting strategies. Here, high-capacity adenoviral vectors (HC-AdVs) encoding single or dual high-specificity RGNs with optimized components were investigated for permanently repairing defective alleles either through exon 51-targeted indel formation or major mutational hotspot excision (>500 kb), respectively. Firstly, we establish that, at high doses, third-generation HC-AdVs lacking all viral genes are significantly less cytotoxic than second-generation adenoviral vectors deleted in and . Secondly, we demonstrate that genetically retargeted HC-AdVs can correct up to 42% ± 13% of defective alleles in muscle cell populations through targeted removal of the major mutational hotspot, in which over 60% of frame-shifting large deletions locate. Both gene repair strategies tested readily led to the detection of Becker-like dystrophins in unselected muscle cell populations, leading to the restoration of β-dystroglycan at the plasmalemma of differentiated muscle cells. Hence, HC-AdVs permit the effective assessment of gene-editing tools and strategies in dystrophin-defective human cells while broadening the gamut of -correcting agents.
杜氏肌营养不良症(DMD)是一种致命的 X 连锁肌肉萎缩性疾病,由肌营养不良蛋白编码基因中的突变引起。RNA 引导的 CRISPR-Cas9 核酸酶(RGNs)为 DMD 的治疗开辟了新途径,其瓶颈包括递送大量 RGN 复合物,以评估其对人类基因组的影响,以及测试体外和体内纠正策略。在这里,我们研究了编码单或双高特异性 RGN 的高容量腺相关病毒(HC-AdVs),其优化组件分别通过靶向外显子 51 的缺失形成或主要突变热点切除(>500 kb)来永久性修复有缺陷的 等位基因。首先,我们确定在高剂量下,缺乏所有病毒基因的第三代 HC-AdVs 比缺失 和 的第二代腺病毒载体的细胞毒性显著降低。其次,我们证明了经基因重靶向的 HC-AdVs 可以通过靶向去除主要突变热点来纠正高达 42%±13%的肌肉细胞群体中的缺陷 等位基因,其中超过 60%的移码大片段缺失位于其中。所测试的两种 基因修复策略都能在未选择的肌肉细胞群体中轻易检测到 Becker 样肌营养不良蛋白,从而使分化肌肉细胞的质膜上恢复 β-肌聚糖。因此,HC-AdVs 允许在缺乏肌营养不良蛋白的人类细胞中有效评估基因编辑工具和策略,同时拓宽了纠正剂的范围。