Suppr超能文献

芬苯达唑控制模型中的生长、毒力潜力和动物感染。

Fenbendazole Controls Growth, Virulence Potential, and Animal Infection in the Model.

机构信息

Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.

Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA.

出版信息

Antimicrob Agents Chemother. 2020 May 21;64(6). doi: 10.1128/AAC.00286-20.

Abstract

The human diseases caused by the fungal pathogens and are associated with high indices of mortality and toxic and/or cost-prohibitive therapeutic protocols. The need for affordable antifungals to combat cryptococcal disease is unquestionable. Previous studies suggested benzimidazoles as promising anticryptococcal agents combining low cost and high antifungal efficacy, but their therapeutic potential has not been demonstrated so far. In this study, we investigated the antifungal potential of fenbendazole, the most effective anticryptococcal benzimidazole. Fenbendazole was inhibitory against 17 different isolates of and at a low concentration. The mechanism of anticryptococcal activity of fenbendazole involved microtubule disorganization, as previously described for human parasites. In combination with fenbendazole, the concentrations of the standard antifungal amphotericin B required to control cryptococcal growth were lower than those required when this antifungal was used alone. Fenbendazole was not toxic to mammalian cells. During macrophage infection, the anticryptococcal effects of fenbendazole included inhibition of intracellular proliferation rates and reduced phagocytic escape through vomocytosis. Fenbendazole deeply affected the cryptococcal capsule. In a mouse model of cryptococcosis, the efficacy of fenbendazole to control animal mortality was similar to that observed for amphotericin B. These results indicate that fenbendazole is a promising candidate for the future development of an efficient and affordable therapeutic tool to combat cryptococcosis.

摘要

由真菌病原体引起的人类疾病与高死亡率以及毒性和/或昂贵的治疗方案有关。毫无疑问,需要负担得起的抗真菌药物来对抗隐球菌病。以前的研究表明苯并咪唑类药物具有很大的抗隐球菌作用,具有成本低和抗真菌效果好的特点,但到目前为止,其治疗潜力尚未得到证实。在这项研究中,我们研究了芬苯达唑作为最有效的抗隐球菌苯并咪唑类药物的抗真菌潜力。芬苯达唑在低浓度下对 17 种不同的 和 分离株具有抑制作用。芬苯达唑抗隐球菌活性的机制涉及微管组织的解聚,如先前描述的人类寄生虫。与芬苯达唑联合使用时,控制隐球菌生长所需的标准抗真菌两性霉素 B 的浓度低于单独使用该抗真菌药物时所需的浓度。芬苯达唑对哺乳动物细胞没有毒性。在巨噬细胞感染期间,芬苯达唑的抗隐球菌作用包括抑制细胞内增殖率和通过胞吐作用减少吞噬逃避。芬苯达唑对隐球菌荚膜有很深的影响。在隐球菌病的小鼠模型中,芬苯达唑控制动物死亡率的疗效与两性霉素 B 相似。这些结果表明,芬苯达唑是未来开发高效、经济实惠的治疗工具以对抗隐球菌病的有希望的候选药物。

相似文献

1
Fenbendazole Controls Growth, Virulence Potential, and Animal Infection in the Model.
Antimicrob Agents Chemother. 2020 May 21;64(6). doi: 10.1128/AAC.00286-20.
2
Proteomics reveals that the antifungal activity of fenbendazole against Cryptococcus neoformans requires protein kinases.
Int J Antimicrob Agents. 2024 May;63(5):107157. doi: 10.1016/j.ijantimicag.2024.107157. Epub 2024 Mar 26.
6
Hydroxyaldimines as potent in vitro anticryptococcal agents.
Lett Appl Microbiol. 2013 Aug;57(2):137-43. doi: 10.1111/lam.12086. Epub 2013 May 20.
9
Adaptation to Fluconazole via Aneuploidy Enables Cross-Adaptation to Amphotericin B and Flucytosine in Cryptococcus neoformans.
Microbiol Spectr. 2021 Oct 31;9(2):e0072321. doi: 10.1128/Spectrum.00723-21. Epub 2021 Sep 29.

引用本文的文献

1
Growth of nematophagous fungi in the presence of anthelmintics drugs.
Braz J Microbiol. 2025 Jun;56(2):1411-1419. doi: 10.1007/s42770-025-01671-4. Epub 2025 Apr 24.
2
The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives.
Curr Res Microb Sci. 2025 Jan 11;8:100341. doi: 10.1016/j.crmicr.2025.100341. eCollection 2025.
3
Biologically active secondary metabolites from white-rot fungi.
Front Chem. 2024 Mar 13;12:1363354. doi: 10.3389/fchem.2024.1363354. eCollection 2024.
4
Corrected and republished from: "Extracellular Vesicle Formation in Impacts Fungal Virulence".
Infect Immun. 2024 Apr 9;92(4):e0003724. doi: 10.1128/iai.00037-24. Epub 2024 Mar 12.
7
Antifungal activity of the repurposed drug disulfiram against .
Front Pharmacol. 2024 Jan 11;14:1268649. doi: 10.3389/fphar.2023.1268649. eCollection 2023.
8
Diagnosis and management of cryptococcal meningitis in HIV-infected adults.
Clin Microbiol Rev. 2023 Dec 20;36(4):e0015622. doi: 10.1128/cmr.00156-22. Epub 2023 Nov 28.
10
Searching for new antifungals for the treatment of cryptococcosis.
Rev Soc Bras Med Trop. 2023 Jul 24;56:e01212023. doi: 10.1590/0037-8682-0121-2023. eCollection 2023.

本文引用的文献

4
Vomocytosis: What we know so far.
Cell Microbiol. 2020 Feb;22(2):e13145. doi: 10.1111/cmi.13145. Epub 2019 Nov 20.
5
New Insights Into Cryptococcus Spp. Biology and Cryptococcal Meningitis.
Curr Neurol Neurosci Rep. 2019 Oct 31;19(10):81. doi: 10.1007/s11910-019-0993-0.
6
Mortality by cryptococcosis in Brazil from 2000 to 2012: A descriptive epidemiological study.
PLoS Negl Trop Dis. 2019 Jul 29;13(7):e0007569. doi: 10.1371/journal.pntd.0007569. eCollection 2019 Jul.
8
Identification of Off-Patent Compounds That Present Antifungal Activity Against the Emerging Fungal Pathogen .
Front Cell Infect Microbiol. 2019 Apr 2;9:83. doi: 10.3389/fcimb.2019.00083. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验