Suppr超能文献

校正后重新发布自:“细胞外囊泡形成影响真菌毒力”。

Corrected and republished from: "Extracellular Vesicle Formation in Impacts Fungal Virulence".

机构信息

Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.

Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.

出版信息

Infect Immun. 2024 Apr 9;92(4):e0003724. doi: 10.1128/iai.00037-24. Epub 2024 Mar 12.

Abstract

Small molecules are components of fungal extracellular vesicles (EVs), but their biological roles are only superficially known. is a eukaryotic gene that is required for the activity of benzimidazoles against . In this study, during the phenotypic characterization of mutants expected to lack expression, we observed a reduced EV production. Whole-genome sequencing, RNA-Seq, and cellular proteomics revealed that, contrary to our initial findings, these mutants expressed Nop16 but exhibited altered expression of 14 genes potentially involved in sugar transport. Based on this observation, we designated these mutant strains as Past1 and Past2, representing otentially ltered ugar ransport. Analysis of the small molecule composition of EVs produced by wild-type cells and the Past1 and Past2 mutant strains revealed not only a reduced number of EVs but also an altered small molecule composition. In a model of infection, the Past1 and Past2 mutant strains were hypovirulent. The hypovirulent phenotype was reverted when EVs produced by wild-type cells, but not mutant EVs, were co-injected with the mutant cells in . These results connect EV biogenesis, cargo, and cryptococcal virulence.

摘要

小分子是真菌细胞外囊泡(EVs)的组成部分,但它们的生物学功能知之甚少。 is a eukaryotic gene 是一种真核基因,对 针对 的苯并咪唑类药物的活性是必需的。在这项研究中,在对预期缺乏 表达的 突变体进行表型特征分析时,我们观察到 EV 产生减少。全基因组测序、RNA-Seq 和细胞蛋白质组学揭示,与我们最初的发现相反,这些突变体表达了 Nop16,但表现出 14 个可能参与糖转运的基因表达改变。基于这一观察结果,我们将这些突变菌株命名为 Past1 和 Past2,代表可能改变的糖转运。对野生型细胞和 Past1 和 Past2 突变菌株产生的 EV 中小分子组成的分析不仅揭示了 EV 数量减少,还揭示了小分子组成的改变。在感染模型中,Past1 和 Past2 突变株的毒力降低。当将野生型细胞产生的 EV 而不是突变型 EV 与 中的突变细胞共注射时,Past1 和 Past2 突变株的低毒力表型得到逆转。这些结果将 EV 生物发生、货物和隐球菌毒力联系起来。

相似文献

1
Corrected and republished from: "Extracellular Vesicle Formation in Impacts Fungal Virulence".
Infect Immun. 2024 Apr 9;92(4):e0003724. doi: 10.1128/iai.00037-24. Epub 2024 Mar 12.
2
Extracellular Vesicle Formation in Cryptococcus deuterogattii Impacts Fungal Virulence and Requires the Gene.
Infect Immun. 2022 Aug 18;90(8):e0023222. doi: 10.1128/iai.00232-22. Epub 2022 Jul 12.
6
Correction for Castelli et al., "Extracellular Vesicle Formation in Impacts Fungal Virulence and Requires the Gene".
Infect Immun. 2024 Apr 9;92(4):e0004924. doi: 10.1128/iai.00049-24. Epub 2024 Mar 12.
7
extracellular vesicles properties and their use as vaccine platforms.
J Extracell Vesicles. 2021 Aug;10(10):e12129. doi: 10.1002/jev2.12129. Epub 2021 Aug 2.
8
10
Pathogenic Delivery: The Biological Roles of Cryptococcal Extracellular Vesicles.
Pathogens. 2020 Sep 16;9(9):754. doi: 10.3390/pathogens9090754.

引用本文的文献

1
Things you wanted to know about fungal extracellular vesicles (but were afraid to ask).
PLoS Negl Trop Dis. 2025 May 22;19(5):e0013038. doi: 10.1371/journal.pntd.0013038. eCollection 2025 May.
3
Fungal Extracellular Vesicle Proteins with Potential in Biological Interaction.
Molecules. 2024 Aug 24;29(17):4012. doi: 10.3390/molecules29174012.

本文引用的文献

1
PatternLab V Handles Multiplex Spectra in Shotgun Proteomic Searches and Increases Identification.
J Am Soc Mass Spectrom. 2023 Apr 5;34(4):794-796. doi: 10.1021/jasms.3c00063. Epub 2023 Mar 22.
2
PerSVade: personalized structural variant detection in any species of interest.
Genome Biol. 2022 Aug 16;23(1):175. doi: 10.1186/s13059-022-02737-4.
3
Extracellular Vesicle Formation in Cryptococcus deuterogattii Impacts Fungal Virulence and Requires the Gene.
Infect Immun. 2022 Aug 18;90(8):e0023222. doi: 10.1128/iai.00232-22. Epub 2022 Jul 12.
4
Simple, efficient and thorough shotgun proteomic analysis with PatternLab V.
Nat Protoc. 2022 Jul;17(7):1553-1578. doi: 10.1038/s41596-022-00690-x. Epub 2022 Apr 11.
5
Raman Microspectroscopy Imaging Analysis of Extracellular Vesicles Biogenesis by Filamentous Fungus Penicilium chrysogenum.
Adv Biol (Weinh). 2022 Jun;6(6):e2101322. doi: 10.1002/adbi.202101322. Epub 2022 Mar 11.
6
From fundamental biology to the search for innovation: The story of fungal extracellular vesicles.
Eur J Cell Biol. 2022 Apr;101(2):151205. doi: 10.1016/j.ejcb.2022.151205. Epub 2022 Feb 9.
7
Fungal Extracellular Vesicles Are Involved in Intraspecies Intracellular Communication.
mBio. 2022 Feb 22;13(1):e0327221. doi: 10.1128/mbio.03272-21. Epub 2022 Jan 11.
8
A brief history of nearly EV-erything - The rise and rise of extracellular vesicles.
J Extracell Vesicles. 2021 Dec;10(14):e12144. doi: 10.1002/jev2.12144.
9
The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.
Nucleic Acids Res. 2022 Jan 7;50(D1):D543-D552. doi: 10.1093/nar/gkab1038.
10
extracellular vesicles properties and their use as vaccine platforms.
J Extracell Vesicles. 2021 Aug;10(10):e12129. doi: 10.1002/jev2.12129. Epub 2021 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验