Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, SE-22184 Lund, Sweden.
Laboratory of Stem Cells and Regenerative Medicine, Institute of Neurosciences, University of Barcelona, ES-08036 Barcelona, Spain.
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):9094-9100. doi: 10.1073/pnas.2000690117. Epub 2020 Apr 6.
Stem cell transplantation can improve behavioral recovery after stroke in animal models but whether stem cell-derived neurons become functionally integrated into stroke-injured brain circuitry is poorly understood. Here we show that intracortically grafted human induced pluripotent stem (iPS) cell-derived cortical neurons send widespread axonal projections to both hemispheres of rats with ischemic lesions in the cerebral cortex. Using rabies virus-based transsynaptic tracing, we find that at 6 mo after transplantation, host neurons in the contralateral somatosensory cortex receive monosynaptic inputs from grafted neurons. Immunoelectron microscopy demonstrates myelination of the graft-derived axons in the corpus callosum and that their terminals form excitatory, glutamatergic synapses on host cortical neurons. We show that the stroke-induced asymmetry in a sensorimotor (cylinder) test is reversed by transplantation. Light-induced inhibition of halorhodopsin-expressing, grafted neurons does not recreate the impairment, indicating that its reversal is not due to neuronal activity in the graft. However, we find bilateral decrease of motor performance in the cylinder test after light-induced inhibition of either grafted or endogenous halorhodopsin-expressing cortical neurons, located in the same area, and after inhibition of endogenous halorhodopsin-expressing cortical neurons by exposure of their axons to light on the contralateral side. Our data indicate that activity in the grafted neurons, probably mediated through transcallosal connections to the contralateral hemisphere, is involved in maintaining normal motor function. This is an example of functional integration of efferent projections from grafted neurons into the stroke-affected brain's neural circuitry, which raises the possibility that such repair might be achievable also in humans affected by stroke.
干细胞移植可以改善动物模型中风后的行为恢复,但干细胞衍生的神经元是否能在中风损伤的大脑回路中实现功能性整合还知之甚少。在这里,我们展示了皮质内移植的人类诱导多能干细胞(iPS)细胞衍生的皮质神经元向大脑皮质缺血性损伤的大鼠两个半球发出广泛的轴突投射。使用基于狂犬病毒的顺行追踪,我们发现,在移植后 6 个月,对侧体感皮层中的宿主神经元接收来自移植神经元的单突触输入。免疫电子显微镜显示,移植衍生轴突在胼胝体中的髓鞘形成,其末端在宿主皮质神经元上形成兴奋性谷氨酸能突触。我们表明,移植可以逆转中风引起的感觉运动(圆筒)测试中的不对称性。表达 halorhodopsin 的移植神经元的光诱导抑制不会重现损伤,表明其逆转不是由于移植中的神经元活动。然而,我们发现,在对侧侧暴露于光线下抑制表达内源 halorhodopsin 的皮质神经元的轴突后,用光诱导抑制位于同一区域的移植或内源 halorhodopsin 表达的皮质神经元后,圆筒测试中的运动性能会出现双侧下降。我们的数据表明,移植神经元的活动可能通过胼胝体连接到对侧半球,参与维持正常的运动功能。这是移植神经元传出投射整合到中风影响的大脑神经回路中的一个例子,这增加了这种修复也可能在中风影响的人类中实现的可能性。