Suppr超能文献

评估海洋生物碳泵的重要指标。

Metrics that matter for assessing the ocean biological carbon pump.

机构信息

Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543;

Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia.

出版信息

Proc Natl Acad Sci U S A. 2020 May 5;117(18):9679-9687. doi: 10.1073/pnas.1918114117. Epub 2020 Apr 6.

Abstract

The biological carbon pump (BCP) comprises wide-ranging processes that set carbon supply, consumption, and storage in the oceans' interior. It is becoming increasingly evident that small changes in the efficiency of the BCP can significantly alter ocean carbon sequestration and, thus, atmospheric CO and climate, as well as the functioning of midwater ecosystems. Earth system models, including those used by the United Nation's Intergovernmental Panel on Climate Change, most often assess POC (particulate organic carbon) flux into the ocean interior at a fixed reference depth. The extrapolation of these fluxes to other depths, which defines the BCP efficiencies, is often executed using an idealized and empirically based flux-vs.-depth relationship, often referred to as the "Martin curve." We use a new compilation of POC fluxes in the upper ocean to reveal very different patterns in BCP efficiencies depending upon whether the fluxes are assessed at a fixed reference depth or relative to the depth of the sunlit euphotic zone (Ez). We find that the fixed-depth approach underestimates BCP efficiencies when the Ez is shallow, and vice versa. This adjustment alters regional assessments of BCP efficiencies as well as global carbon budgets and the interpretation of prior BCP studies. With several international studies recently underway to study the ocean BCP, there are new and unique opportunities to improve our understanding of the mechanistic controls on BCP efficiencies. However, we will only be able to compare results between studies if we use a common set of Ez-based metrics.

摘要

生物碳泵(BCP)由广泛的过程组成,这些过程决定了海洋内部的碳供应、消耗和储存。越来越明显的是,BCP 效率的微小变化可以显著改变海洋碳封存,从而改变大气 CO 和气候,以及中水生态系统的功能。地球系统模型,包括联合国政府间气候变化专门委员会使用的模型,通常在固定参考深度评估进入海洋内部的颗粒有机碳(POC)通量。这些通量向其他深度的外推,定义了 BCP 效率,通常使用理想化和基于经验的通量-深度关系来执行,通常称为“Martin 曲线”。我们使用上层海洋中 POC 通量的新汇编来揭示 BCP 效率的非常不同的模式,具体取决于通量是在固定参考深度还是相对于阳光充足的真光层(Ez)评估。我们发现,当 Ez 较浅时,固定深度方法会低估 BCP 效率,反之亦然。这种调整改变了对 BCP 效率的区域评估以及全球碳预算和对先前 BCP 研究的解释。随着最近有几项关于海洋 BCP 的国际研究正在进行,我们有新的和独特的机会来更好地理解 BCP 效率的机制控制。然而,如果我们使用一套共同的基于 Ez 的指标,我们将只能比较研究之间的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1b7/7211944/3b4f21bec22e/pnas.1918114117fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验