Suppr超能文献

验证两个美国乳腺癌风险预测模型在德国女性中的适用性。

Validation of two US breast cancer risk prediction models in German women.

机构信息

Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.

Department of Gynecology and Obstetrics, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675, Munich, Germany.

出版信息

Cancer Causes Control. 2020 Jun;31(6):525-536. doi: 10.1007/s10552-020-01272-6. Epub 2020 Apr 6.

Abstract

PURPOSE

There are no models for German women that predict absolute risk of invasive breast cancer (BC), i.e., the probability of developing BC over a prespecified time period, given a woman's age and characteristics, while accounting for competing risks. We thus validated two absolute BC risk models (BCRAT, BCRmod) developed for US women in German women. BCRAT uses a woman's medical, reproductive, and BC family history; BCRmod adds modifiable risk factors (body mass index, hormone replacement therapy and alcohol use).

METHODS

We assessed model calibration by comparing observed BC numbers (O) to expected numbers (E) computed from BCRmod/BCRAT for German women enrolled in the prospective European Prospective Investigation into Cancer and Nutrition (EPIC), and after updating the models with German BC incidence/competing mortality rates. We also compared 1-year BC risk predicted for all German women using the German Health Interview and Examination Survey for Adults (DEGS) with overall German BC incidence. Discriminatory performance was quantified by the area under the receiver operator characteristics curve (AUC).

RESULTS

Among 22,098 EPIC-Germany women aged 40+ years, 745 BCs occurred (median follow-up: 11.9 years). Both models had good calibration for total follow-up, E/O = 1.08 (95% confidence interval: 0.95-1.21), and E/O = 0.99(0.87-1.11), and over 5 years. Compared to German BC incidence rates, both models somewhat overestimated 1-year risk for women aged 55+ and 70+ years. For total follow-up, AUC = 0.61(0.58-0.63) and AUC = 0.58(0.56-0.61), with similar values for 5-year follow-up.

CONCLUSION

US BC risk models showed adequate calibration in German women. Discriminatory performance was comparable to that in US women. These models thus could be applied for risk prediction in German women.

摘要

目的

目前尚无针对德国女性的模型可以预测浸润性乳腺癌(BC)的绝对风险,即给定女性的年龄和特征,在考虑竞争风险的情况下,在特定时间段内发生 BC 的概率。因此,我们验证了两个针对美国女性开发的绝对 BC 风险模型(BCRAT、BCRmod)在德国女性中的适用性。BCRAT 使用女性的医疗、生殖和 BC 家族史;BCRmod 增加了可修改的风险因素(体重指数、激素替代疗法和饮酒)。

方法

我们通过比较 BCRmod/BCRAT 计算的观察到的 BC 数量(O)与德国女性前瞻性欧洲癌症与营养前瞻性研究(EPIC)中的预期数量(E),以及使用德国 BC 发病率/竞争死亡率更新模型后,评估模型校准。我们还比较了使用德国成年人健康访谈和体检调查(DEGS)预测的所有德国女性的 1 年 BC 风险与德国总体 BC 发病率。通过接收者操作特征曲线下的面积(AUC)来量化判别性能。

结果

在 22098 名年龄在 40 岁以上的 EPIC-Germany 女性中,发生了 745 例 BC(中位随访时间:11.9 年)。两个模型在总随访期间的校准都很好,E/O=1.08(95%置信区间:0.95-1.21),E/O=0.99(0.87-1.11),超过 5 年。与德国 BC 发病率相比,两个模型都略微高估了 55 岁以上和 70 岁以上女性的 1 年风险。对于总随访期,AUC=0.61(0.58-0.63)和 AUC=0.58(0.56-0.61),5 年随访期的 AUC 值相似。

结论

美国 BC 风险模型在德国女性中表现出良好的校准。判别性能与美国女性相似。因此,这些模型可应用于德国女性的风险预测。

相似文献

1
Validation of two US breast cancer risk prediction models in German women.
Cancer Causes Control. 2020 Jun;31(6):525-536. doi: 10.1007/s10552-020-01272-6. Epub 2020 Apr 6.
2
Development and validation of a risk prediction model for premenopausal breast cancer in 19 cohorts.
Breast Cancer Res. 2025 May 1;27(1):67. doi: 10.1186/s13058-025-02031-8.
3
10-year performance of four models of breast cancer risk: a validation study.
Lancet Oncol. 2019 Apr;20(4):504-517. doi: 10.1016/S1470-2045(18)30902-1. Epub 2019 Feb 21.
4
Evaluating breast cancer risk projections for Hispanic women.
Breast Cancer Res Treat. 2012 Feb;132(1):347-53. doi: 10.1007/s10549-011-1900-9. Epub 2011 Dec 7.
6
Model for individualized prediction of breast cancer risk after a benign breast biopsy.
J Clin Oncol. 2015 Mar 10;33(8):923-9. doi: 10.1200/JCO.2014.55.4865. Epub 2015 Jan 26.
7
Projecting Individualized Absolute Invasive Breast Cancer Risk in US Hispanic Women.
J Natl Cancer Inst. 2016 Dec 20;109(2). doi: 10.1093/jnci/djw215. Print 2017 Feb.
8
Performance of the Breast Cancer Risk Assessment Tool Among Women Age 75 Years and Older.
J Natl Cancer Inst. 2015 Nov 30;108(3). doi: 10.1093/jnci/djv348. Print 2016 Mar.
9
Development and external validation of a breast cancer absolute risk prediction model in Chinese population.
Breast Cancer Res. 2021 May 29;23(1):62. doi: 10.1186/s13058-021-01439-2.
10
Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts.
Breast Cancer Res. 2018 Dec 3;20(1):147. doi: 10.1186/s13058-018-1073-0.

引用本文的文献

1
Development and performance of female breast cancer incidence risk prediction models: a systematic review and meta-analysis.
Ann Med. 2025 Dec;57(1):2534522. doi: 10.1080/07853890.2025.2534522. Epub 2025 Jul 20.
2
Breast Cancer Risk Assessment Tools for Stratifying Women into Risk Groups: A Systematic Review.
Cancers (Basel). 2023 Feb 9;15(4):1124. doi: 10.3390/cancers15041124.
3
Estimating the Breast Cancer Burden in Germany and Implications for Risk-based Screening.
Cancer Prev Res (Phila). 2021 Jun;14(6):627-634. doi: 10.1158/1940-6207.CAPR-20-0437. Epub 2021 Mar 5.

本文引用的文献

1
Prospective validation of the NCI Breast Cancer Risk Assessment Tool (Gail Model) on 40,000 Australian women.
Breast Cancer Res. 2018 Dec 20;20(1):155. doi: 10.1186/s13058-018-1084-x.
2
Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts.
Breast Cancer Res. 2018 Dec 3;20(1):147. doi: 10.1186/s13058-018-1073-0.
3
Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018.
Eur J Cancer. 2018 Nov;103:356-387. doi: 10.1016/j.ejca.2018.07.005. Epub 2018 Aug 9.
4
Proportion of U.S. Trends in Breast Cancer Incidence Attributable to Long-term Changes in Risk Factor Distributions.
Cancer Epidemiol Biomarkers Prev. 2018 Oct;27(10):1214-1222. doi: 10.1158/1055-9965.EPI-18-0098. Epub 2018 Aug 1.
5
The WISDOM Study: breaking the deadlock in the breast cancer screening debate.
NPJ Breast Cancer. 2017 Sep 13;3:34. doi: 10.1038/s41523-017-0035-5. eCollection 2017.
7
Breast Cancer Risk From Modifiable and Nonmodifiable Risk Factors Among White Women in the United States.
JAMA Oncol. 2016 Oct 1;2(10):1295-1302. doi: 10.1001/jamaoncol.2016.1025.
8
Prediction of breast cancer risk based on profiling with common genetic variants.
J Natl Cancer Inst. 2015 Apr 8;107(5). doi: 10.1093/jnci/djv036. Print 2015 May.
9
Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012.
Int J Cancer. 2015 Mar 1;136(5):E359-86. doi: 10.1002/ijc.29210. Epub 2014 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验