Kumar Ravi, Chauhan Anjali, Jha Sushil K, Kuanr Bijoy Kumar
Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
J Mater Chem B. 2018 Sep 7;6(33):5385-5399. doi: 10.1039/c8tb01365a. Epub 2018 Aug 13.
We have produced an innovative, theranostic hybrid nanocomposite of graphene oxide and iron oxide (GO-FeO) for radio-frequency hyperthermia therapy. A new electrochemical synthesis route for the GO-FeO nanocomposite is employed. Superparamagnetic nanoparticles used for magnetic hyperthermia for biomedical application face longstanding obstacles, including the large number of nanoparticles required to achieve the desired therapeutic temperature, poor colloidal stability in aqueous suspension or physiological media, poor biocompatibility and, most importantly, low specific absorption rate (SAR). To limit the dosage of nanoparticles for therapeutic use, efforts are being made to increase the heating efficiency of nanoparticles. We have introduced an alternative way to increase the SAR value by improving the colloidal stability of magnetic nanoparticles. It is necessary to immobilize these nanoparticles on a support to prevent their agglomeration and precipitation in aqueous suspension. To address these issues, we report a reproducible electrochemical synthesis route for the GO-FeO nanocomposite. Our nanocomposite demonstrated good colloidal stability and low cytotoxicity in vitro. Due to its good colloidal stability, the nanocomposite had a high SAR of 543 W g and corresponding intrinsic loss power of 5.98 nH m kg, which is 46% better than the best commercial equivalents. In vitro cytotoxicity studies demonstrated almost 70% cell viability at 200 μg mL GO-FeO nanocomposite, a comparable concentration for clinical use according to FDA standards. We also showed the therapeutic potential of the nanocomposite using magnetic hyperthermia. We observed cancer cell (A549 human lung epithelial adenocarcinoma) ablation at 41, 42 and 43 °C for 30, 45, and 60 min. A maximum cancer cell death rate of 80.5% was observed at 43 °C for 60 min under alternating magnetic field exposure. Thus, the nanocomposites could be used in the efficient treatment of cancer.
我们制备了一种用于射频热疗的创新型诊断与治疗一体化的氧化石墨烯和氧化铁杂化纳米复合材料(GO-FeO)。采用了一种用于GO-FeO纳米复合材料的新型电化学合成路线。用于生物医学应用的磁热疗的超顺磁性纳米颗粒面临着长期存在的障碍,包括达到所需治疗温度所需的大量纳米颗粒、在水悬浮液或生理介质中较差的胶体稳定性、较差的生物相容性,以及最重要的低比吸收率(SAR)。为了限制用于治疗的纳米颗粒剂量,人们正在努力提高纳米颗粒的加热效率。我们引入了一种通过改善磁性纳米颗粒的胶体稳定性来提高SAR值的替代方法。有必要将这些纳米颗粒固定在载体上,以防止它们在水悬浮液中团聚和沉淀。为了解决这些问题,我们报道了一种用于GO-FeO纳米复合材料的可重复的电化学合成路线。我们的纳米复合材料在体外表现出良好的胶体稳定性和低细胞毒性。由于其良好的胶体稳定性,该纳米复合材料具有543 W g的高SAR和相应的5.98 nH m kg的固有损耗功率,比最佳的商业同类产品高出46%。体外细胞毒性研究表明,在200 μg mL的GO-FeO纳米复合材料浓度下,细胞活力接近70%,根据FDA标准,这是一个可用于临床的相当浓度。我们还展示了该纳米复合材料在磁热疗方面的治疗潜力。我们观察到在41、42和43°C下分别处理30、45和60分钟时癌细胞(A549人肺上皮腺癌)被消融。在交变磁场暴露下,在43°C处理60分钟时观察到最大癌细胞死亡率为80.5%。因此,该纳米复合材料可用于癌症的有效治疗。