Hassan N, Cordero M L, Sierpe R, Almada M, Juárez J, Valdez M, Riveros A, Vargas E, Abou-Hassan A, Ruso J M, Kogan M J
Programa Institucional de Fomento a la I + D + i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
J Mater Chem B. 2018 Aug 21;6(31):5091-5099. doi: 10.1039/c8tb00206a. Epub 2018 Jul 25.
In the present work, we report on the synthesis of peptide functionalized magneto-plasmonic nanoparticles in a simple microfluidic platform. Superparamagnetic nanoparticles and gold nanorods were selected for this study. Magnetic nanoparticles were functionalized with peptide D1, which can bind selectively to toxic aggregates of the β-amyloid peptide associated with Alzheimer's disease. Gold nanorods were functionalized with chitosan replacing the surfactant cetyltrimethylammonium bromide to reduce the cytotoxic effect. The selected microfluidic strategy yields structures with plasmonic and magnetic properties in a nanostructure. Cytotoxic assays with SH-SY5Y cells demonstrate that nanoparticles obtained by microfluidics do not affect cell viability at the studied concentrations. Additionally, these magneto-plasmonic nanoparticles inhibit fibril formation demonstrating that the magneto-plasmonic nanoparticles obtained by microfluidics could be applied for a potential treatment and diagnosis of Alzheimer's disease.
在本工作中,我们报道了在一个简单的微流控平台上合成肽功能化的磁等离子体纳米颗粒。本研究选用了超顺磁性纳米颗粒和金纳米棒。磁性纳米颗粒用肽D1进行功能化,肽D1可选择性结合与阿尔茨海默病相关的β-淀粉样肽的有毒聚集体。金纳米棒用壳聚糖进行功能化,取代表面活性剂十六烷基三甲基溴化铵以降低细胞毒性作用。所选用的微流控策略在纳米结构中产生具有等离子体和磁性特性的结构。用SH-SY5Y细胞进行的细胞毒性试验表明,通过微流控获得的纳米颗粒在所研究的浓度下不影响细胞活力。此外,这些磁等离子体纳米颗粒抑制原纤维形成,表明通过微流控获得的磁等离子体纳米颗粒可用于阿尔茨海默病的潜在治疗和诊断。