Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
Nanoscale. 2020 Apr 28;12(16):8847-8857. doi: 10.1039/c9nr10701k. Epub 2020 Apr 7.
Nanodiamonds containing the nitrogen vacancy centre (NV) have a significant role in biosensing, bioimaging, drug delivery, and as biomarkers in fluorescence imaging, due to their photo-stability and biocompatibility. The optical read out of the NV unpaired electron spin has been used in diamond magnetometry to image living cells and magnetically labelled cells. Diamond magnetometry is mostly based on the use of bulk diamond with a large concentration of NV centres in a wide field fluorescence microscope equipped with microwave excitation. It is possible to correlate the fluorescence maps with the magnetic field maps of magnetically labelled cells with diffraction limit resolution. Nanodiamonds have not as yet been implemented to image magnetic fields within complex biological systems at the nanometre scale. Here we demonstrate the suitability of nanodiamonds to correlate the fluorescence map with the magnetic imaging map of magnetically labelled cells. Nanoscale optical images with 17 nm resolution of nanodiamonds labelling fixed cells bound to iron oxide magnetic nanoparticles are demonstrated by using a single molecule localisation microscope. Nanoscale magnetic field images of the magnetised magnetic nanoparticles spatially assigned to individual cells are superresolved by the NV centres within nanodiamonds conjugated with the magnetic nanoparticles with 20 nm resolutions. Our method offers a new platform for the super-resolution of optical magnetic imaging in biological samples conjugated with nanodiamonds and iron-oxide magnetic nanoparticles.
含氮空位中心(NV)的纳米金刚石在生物传感、生物成像、药物输送以及荧光成像中的生物标志物方面具有重要作用,这是因为它们具有光稳定性和生物相容性。NV 未配对电子自旋的光学读出已用于金刚石磁力计,以对活细胞和经磁标记的细胞进行成像。金刚石磁力计主要基于使用具有大量 NV 中心的体金刚石,在配备微波激发的宽场荧光显微镜中进行。可以用衍射极限分辨率将荧光图谱与经磁标记的细胞的磁场图谱相关联。尚未将纳米金刚石用于在纳米尺度的复杂生物系统中对磁场进行成像。在这里,我们证明了纳米金刚石适合于将荧光图谱与经磁标记的细胞的磁成像图谱相关联。通过使用单分子定位显微镜,演示了固定细胞与氧化铁磁性纳米颗粒结合后,纳米金刚石标记的具有 17nm 分辨率的纳米级光学图像。通过与磁性纳米颗粒结合的纳米金刚石中的 NV 中心,对空间分配到各个细胞的磁化磁性纳米颗粒的纳米级磁场图像进行超分辨率处理,分辨率达到 20nm。我们的方法为用纳米金刚石和氧化铁磁性纳米颗粒进行生物样品的光学磁成像超分辨率提供了一个新平台。