Suppr超能文献

纳米金刚石中氮空位中心的基态耗尽纳米显微镜技术

Ground-State Depletion Nanoscopy of Nitrogen-Vacancy Centres in Nanodiamonds.

作者信息

Storterboom Jelle, Barbiero Martina, Castelletto Stefania, Gu Min

机构信息

Optical Sciences Centre, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia.

Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.

出版信息

Nanoscale Res Lett. 2021 Mar 10;16(1):44. doi: 10.1186/s11671-021-03503-4.

Abstract

The negatively charged nitrogen-vacancy ([Formula: see text]) centre in nanodiamonds (NDs) has been recently studied for applications in cellular imaging due to its better photo-stability and biocompatibility if compared to other fluorophores. Super-resolution imaging achieving 20-nm resolution of [Formula: see text] in NDs has been proved over the years using sub-diffraction limited imaging approaches such as single molecule stochastic localisation microscopy and stimulated emission depletion microscopy. Here we show the first demonstration of ground-state depletion (GSD) nanoscopy of these centres in NDs using three beams, a probe beam, a depletion beam and a reset beam. The depletion beam at 638 nm forces the [Formula: see text] centres to the metastable dark state everywhere but in the local minimum, while a Gaussian beam at 594 nm probes the [Formula: see text] centres and a 488-nm reset beam is used to repopulate the excited state. Super-resolution imaging of a single [Formula: see text] centre with a full width at half maximum of 36 nm is demonstrated, and two adjacent [Formula: see text] centres separated by 72 nm are resolved. GSD microscopy is here applied to [Formula: see text] in NDs with a much lower optical power compared to bulk diamond. This work demonstrates the need to control the NDs nitrogen concentration to tailor their application in super-resolution imaging methods and paves the way for studies of [Formula: see text] in NDs' nanoscale interactions.

摘要

由于与其他荧光团相比具有更好的光稳定性和生物相容性,纳米金刚石(NDs)中带负电荷的氮空位([化学式:见原文])中心最近被研究用于细胞成像。多年来,使用诸如单分子随机定位显微镜和受激发射损耗显微镜等亚衍射极限成像方法,已证明在纳米金刚石中实现了分辨率为20纳米的[化学式:见原文]的超分辨率成像。在这里,我们展示了首次使用三束光(探测光束、耗尽光束和重置光束)对纳米金刚石中的这些中心进行基态耗尽(GSD)纳米显微镜成像。638纳米的耗尽光束将[化学式:见原文]中心在除局部最小值以外的所有地方都强制转换为亚稳态暗态,而594纳米的高斯光束探测[化学式:见原文]中心,488纳米的重置光束用于重新填充激发态。展示了对单个[化学式:见原文]中心进行半高宽为36纳米的超分辨率成像,并分辨出两个相距72纳米的相邻[化学式:见原文]中心。与块状金刚石相比,这里将GSD显微镜应用于纳米金刚石中的[化学式:见原文]时所需的光功率要低得多。这项工作表明需要控制纳米金刚石的氮浓度以调整其在超分辨率成像方法中的应用,并为研究纳米金刚石中[化学式:见原文]的纳米级相互作用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/506e/7947094/4f4503fd4f4a/11671_2021_3503_Fig1_HTML.jpg

相似文献

1
Ground-State Depletion Nanoscopy of Nitrogen-Vacancy Centres in Nanodiamonds.
Nanoscale Res Lett. 2021 Mar 10;16(1):44. doi: 10.1186/s11671-021-03503-4.
2
Charge state depletion nanoscopy with a nitrogen-vacancy center in nanodiamonds.
Opt Lett. 2022 Jan 1;47(1):66-69. doi: 10.1364/OL.447864.
3
Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds.
Light Sci Appl. 2017 Nov 3;6(11):e17085. doi: 10.1038/lsa.2017.85. eCollection 2017 Nov.
4
Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labelled by iron-oxide nanoparticles.
Nanoscale. 2020 Apr 28;12(16):8847-8857. doi: 10.1039/c9nr10701k. Epub 2020 Apr 7.
5
Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.
ACS Nano. 2013 Dec 23;7(12):10912-9. doi: 10.1021/nn404421b. Epub 2013 Nov 23.
7
Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.
Acc Chem Res. 2016 Mar 15;49(3):400-7. doi: 10.1021/acs.accounts.5b00484. Epub 2016 Feb 16.
8
Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy.
Biosensors (Basel). 2022 Feb 28;12(3):148. doi: 10.3390/bios12030148.

引用本文的文献

1
Fluorescent Nanoparticles for Super-Resolution Imaging.
Chem Rev. 2022 Aug 10;122(15):12495-12543. doi: 10.1021/acs.chemrev.2c00050. Epub 2022 Jun 27.

本文引用的文献

1
Optomagnetic plasmonic nanocircuits.
Nanoscale Adv. 2019 Jun 25;1(8):3131-3138. doi: 10.1039/c9na00351g. eCollection 2019 Aug 6.
2
Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labelled by iron-oxide nanoparticles.
Nanoscale. 2020 Apr 28;12(16):8847-8857. doi: 10.1039/c9nr10701k. Epub 2020 Apr 7.
4
Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond.
Nat Commun. 2019 Oct 31;10(1):4956. doi: 10.1038/s41467-019-12556-0.
5
Ultra-long coherence times amongst room-temperature solid-state spins.
Nat Commun. 2019 Aug 28;10(1):3766. doi: 10.1038/s41467-019-11776-8.
6
Advances in Nanomaterials for Brain Microscopy.
Nano Res. 2018 Oct;11(10):5144-5172. doi: 10.1007/s12274-018-2145-2. Epub 2018 Aug 8.
7
Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds.
Light Sci Appl. 2017 Nov 3;6(11):e17085. doi: 10.1038/lsa.2017.85. eCollection 2017 Nov.
9
Optical magnetic detection of single-neuron action potentials using quantum defects in diamond.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14133-14138. doi: 10.1073/pnas.1601513113. Epub 2016 Nov 22.
10
Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond.
Nano Lett. 2016 Aug 10;16(8):4982-90. doi: 10.1021/acs.nanolett.6b01692. Epub 2016 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验