Liu Lewis Y, Ma Xue-Zhong, Ouyang Ben, Ings Danielle P, Marwah Sagar, Liu Jeff, Chen Annie Y, Gupta Rahul, Manuel Justin, Chen Xu-Chun, Gage Blair K, Cirlan Iulia, Khuu Nicholas, Chung Sai, Camat Damra, Cheng Michael, Sekhon Manmeet, Zagorovsky Kyryl, Abdou Mohamed Mohamed A, Thoeni Cornelia, Atif Jawairia, Echeverri Juan, Kollmann Dagmar, Fischer Sandra, Bader Gary D, Chan Warren C W, Michalak Tomasz I, McGilvray Ian D, MacParland Sonya A
Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4.
Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8.
ACS Nano. 2020 Apr 28;14(4):4698-4715. doi: 10.1021/acsnano.0c00468. Epub 2020 Apr 14.
There is a tremendous focus on the application of nanomaterials for the treatment of cancer. Nonprimate models are conventionally used to assess the biomedical utility of nanomaterials. However, these animals often lack an intact immunological background, and the tumors in these animals do not develop spontaneously. We introduce a preclinical woodchuck hepatitis virus-induced liver cancer model as a platform for nanoparticle (NP)-based experiments. Liver cancer development in these out-bred animals occurs as a result of persistent viral infection, mimicking human hepatitis B virus-induced HCC development. We highlight how this model addresses key gaps associated with other commonly used tumor models. We employed this model to (1) track organ biodistribution of gold NPs after intravenous administration, (2) examine their subcellular localization in the liver, (3) determine clearance kinetics, and (4) characterize the identity of hepatic macrophages that take up NPs using RNA-sequencing (RNA-seq). We found that the liver and spleen were the primary sites of NP accumulation. Subcellular analyses revealed accumulation of NPs in the lysosomes of CD14 cells. Through RNA-seq, we uncovered that immunosuppressive macrophages within the woodchuck liver are the major cell type that take up injected NPs. The woodchuck-HCC model has the potential to be an invaluable tool to examine NP-based immune modifiers that promote host anti-tumor immunity.
人们对纳米材料在癌症治疗中的应用极为关注。传统上使用非灵长类动物模型来评估纳米材料的生物医学效用。然而,这些动物往往缺乏完整的免疫背景,且这些动物体内的肿瘤不会自发形成。我们引入一种临床前土拨鼠肝炎病毒诱导的肝癌模型,作为基于纳米颗粒(NP)实验的平台。这些远交动物的肝癌发展是持续病毒感染的结果,模拟了人类乙型肝炎病毒诱导的肝癌发展过程。我们着重介绍了该模型如何弥补与其他常用肿瘤模型相关的关键差距。我们利用这个模型来:(1)追踪静脉注射后金纳米颗粒在器官中的生物分布,(2)检查它们在肝脏中的亚细胞定位,(3)确定清除动力学,以及(4)使用RNA测序(RNA-seq)来鉴定摄取纳米颗粒的肝巨噬细胞的特性。我们发现肝脏和脾脏是纳米颗粒积累的主要部位。亚细胞分析显示纳米颗粒在CD14细胞的溶酶体中积累。通过RNA-seq,我们发现土拨鼠肝脏内的免疫抑制巨噬细胞是摄取注射纳米颗粒的主要细胞类型。土拨鼠肝癌模型有可能成为一种非常有价值的工具,用于研究促进宿主抗肿瘤免疫的基于纳米颗粒的免疫调节剂。